OXFORDAQA

INTERNATIONAL QUALIFICATIONS

Please write clearly in	ו block capitals.	
Centre number	Candidate number]
Surname		-
Forename(s)		-
Candidate signature		_
	I declare this is my own work.	

INTERNATIONAL A-LEVEL MATHEMATICS

(9660/MA03) Unit P2 Pure Mathematics

Monday 13 January 2025 07:00 GMT Time allowed: 2 hours 30 minutes

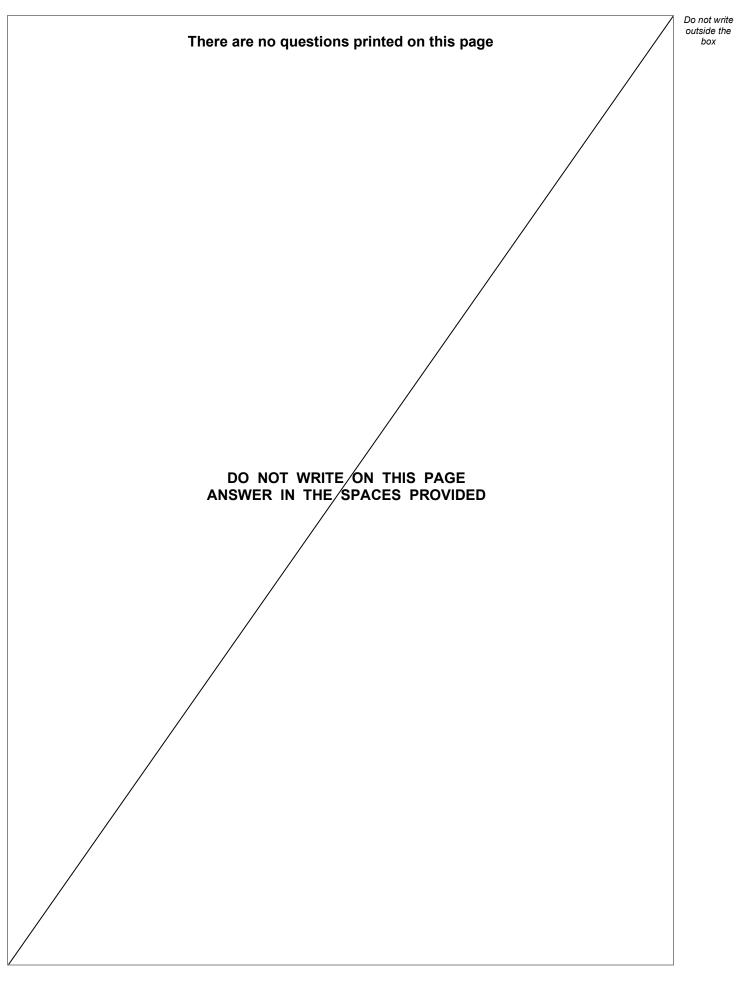
Materials

- For this paper you must have the OxfordAQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information


- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
TOTAL		

Answer all questions in the spac	ces provided.
The polynomial $f(x)$ is defined by	
$f(x) = 12x^3 + bx^2 + cx + bx^2 + bx^2 + cx + bx^2 +$	+6
where b and c are constants.	
When $f(x)$ is divided by $(2x-1)$ the remainded	er is 10
When $f(x)$ is divided by $(2x+3)$ the remaind	ler is –24
Find the value of b and the value of c	[4 marks]

2	(a)	Use the mid-ordinate rule with 5 strips to find an estimate for		
		$\int_0^3 5^{(1-x)} \mathrm{d}x$		
		Give your answer to three decimal places.	[4 mai	rks]
				,
		Answer		

Do not write
outside the
box

2 (b)	A curve has equation $y = 5^{(1-x)}$
2 (b) (i)	The curve intersects the line $y = 2x - 3$ at a single point where $x = \alpha$
	Show that α lies between 1.6 and 1.7 [2 marks]
	[_ mano]
2 (b) (ii)	The equation $5^{(1-x)} = 2x - 3$ can be rearranged into the form $x = 0.5(3 + 5^{(1-x)})$
- (, (,	
	Use the iterative formula $x_{n+1} = 0.5(3+5^{(1-x_n)})$ with $x_1 = 1.6$ to find the value of x_2 and the value of x_3
	Give your values to three decimal places.
	[2 marks]
	$x_2 = $ $x_3 = $
	Turn over for the next question

$y = (3 - 4x^{2})^{10}$ Find $\frac{dy}{dx}$ [2 marks] Answer 3 (b) It is given that $y = x \ln(4x) + 2 \tan(3x)$ Find $\frac{dy}{dx}$ [4 marks] Answer Answer	3 (a)	It is given that		Do no outsi b
[2 marks Answer (b) It is given that $y = x \ln(4x) + 2 \tan(3x)$ Find $\frac{dy}{dx}$ [4 marks		$y = \left(3 - 4x^2\right)^{10}$		
(b) It is given that $y = x \ln(4x) + 2 \tan(3x)$ Find $\frac{dy}{dx}$ [4 marks		Find $\frac{dy}{dx}$		
(b) It is given that $y = x \ln(4x) + 2 \tan(3x)$ Find $\frac{dy}{dx}$ [4 marks]			[2 marks]	
(b) It is given that $y = x \ln(4x) + 2 \tan(3x)$ Find $\frac{dy}{dx}$ [4 marks]				
$y = x \ln(4x) + 2 \tan(3x)$ Find $\frac{dy}{dx}$ [4 marks		Answer		
Find $\frac{dy}{dx}$ [4 marks	(b)	It is given that		
[4 marks		$y = x \ln(4x) + 2 \tan(3x)$		
		Find $\frac{dy}{dx}$	[4 morko]	
Answer				
Answer				
Answer				
		Answer		

Do not write outside the

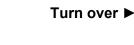
box

[4 marks]

3	(C)	It is given that
	· · /	0

Show that

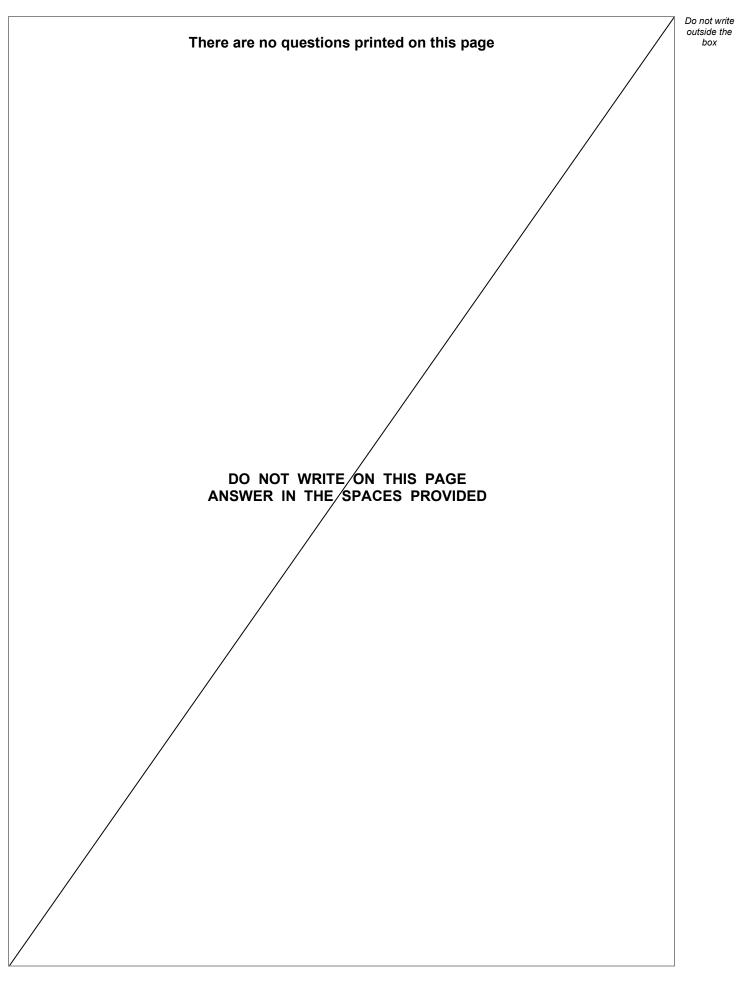
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6(px-q)(qx-p)}{(1-4x)^k}$$


 $y = \frac{(3x-2)^2}{(1-4x)^3}$

where p, q and k are positive integers.

10

IB/G/Jan25/MA03



4	The coordinates of the point A are $(2, -3, -1)$	Do not v outside box
	The coordinates of the point <i>B</i> are $(-2, -1, 4)$	
4 (a)	Find the vector \overrightarrow{AB} [1]	mark]
	Answer	
4 (b)	Find $ \overrightarrow{AB} $ [2 m	arks]
	Answer	
4 (c)	The line <i>l</i> has equation $\mathbf{r} = \begin{bmatrix} 3 \\ b \\ -15 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$ where <i>b</i> is a constant.	
4 (c) (i)	Calculate the acute angle between \overrightarrow{AB} and the line l	
	Give your answer to the nearest 0.1° [3 m	arks]
	Answer	

			Do not write outside the
4	(c) (ii)	The line through A and B intersects the line l	box
		Find the value of b	
		[3 marks]	
			9
		Answer	

		Do not write outside the
5	The region bounded by the curve $y = 1 + \sin x$, the lines $x = 0$, $x = \frac{\pi}{3}$ and the <i>x</i> -axis	box
	is rotated through 2π radians about the <i>x</i> -axis to form a solid.	
	Find the exact value of the volume of this solid. [5 marks]	
	Answer	5

6		The functions f and g are defined by	Do not writ outside the box
		$f(x) = 4\sin\left(\frac{x}{3}\right)$ for $-\frac{3\pi}{2} \le x \le \frac{3\pi}{2}$	
		g(x) = x for all real values of x	
6	(a)	The inverse of f is f^{-1}	
		Find $f^{-1}(x)$ [3 marks]	
		Answer	
6	(b) (i)	Write down an expression for $gf(x)$ [1 mark]	
		Answer	
6	(b) (ii)	Find the range of $gf(x)$ [2 marks]	
		Answer	

Do not write outside the Describe a sequence of **two** geometrical transformations that maps the graph 6 (c) box of $y = \sin x$ onto the graph of $y = 4\sin\left(\frac{x}{3}\right)$ [4 marks] 10 Turn over for the next question Turn over ► 1 3

7	(a) (i)	Express $16\cos\theta - 30\sin\theta$ in the form $R\cos(\theta + \alpha)$ where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$	Do noi outsia bo
		Give the value of α in radians to three significant figures. [3 marks]	
		Answer	
7	(a) (ii)	Hence, or otherwise, solve the equation	
		$16\cos(y+2)-30\sin(y+2)=17$	
		Give all values of y to two decimal places in the interval $-\pi < y < \pi$ [3 marks]	
		Answer	

7	(b)	Solve the equation	Do not write outside the box
		$2\tan^2(x-15^\circ) = 4 + \sec(x-15^\circ)$	
		Give all solutions to the nearest degree in the interval $-90^{\circ} < x < 270^{\circ}$ [5 marks]	
		Answer	11

8	Find $\int_0^1 \ln(2x+1) dx$	Do not writ outside the box
	Give your answer in an exact form. [7 marks]	
	Answer	

9	It is given that	Do not write outside the box
	$\tan lpha + \tan eta = 2$	
	$\cot lpha + \cot eta = -2$	
	Find the possible exact values of $\tan \alpha$	
	[4 marks]	
	Answer	4

10 (a) Find
$$\int \left(\frac{1}{4}e^{2x}-3e^{-2x}\right) dx$$

[2 marks]
10 (b) The diagram shows:
the curve C_1 with equation $y = \frac{1}{4}(e^{2x}-9)$
the curve C_2 with equation $y = 3e^{-2x}-2$
the line L with equation $x = \frac{1}{2}\ln\left(\frac{3}{2}\right)$
the shaded region R
the point P , where the curves C_1 and C_2 intersect.
 $\sqrt{\frac{y^2}{4}}$
 $\frac{L}{R}$
 $\frac{C_1}{C_2}$

10 (b)(i)	Show that the <i>x</i> -coordinate of the point P is ln 2 [4 marks]	Do not write outside the box
		-
		-
		-
		-
		-
10 (b) (ii)	Find the exact value of the area of the shaded region <i>R</i> which is bounded by the curves $y = \frac{1}{4} (e^{2x} - 9)$, $y = 3e^{-2x} - 2$ and the line $x = \frac{1}{2} ln \left(\frac{3}{2}\right)$	
	Give your answer in the form $a+b\ln c$ where a , b and c are rational numbers. [5 marks]]
		-
		-
		-
		-
		-
	Answer	11

11	The equation of a curve is	Do not write outside the box
	$2e^{4x}+6y^2=e^xy^3$	
	The curve has exactly one stationary point.	
	The coordinates of the stationary point of the curve are (a, b) where a and b are constants.	
11 (a)	Find $\frac{dy}{dx}$ [3 marks]	
	Answer	
11 (b)	Show that $b = 2e^a$ [2 marks]	

11 (c)	Find the exact value of a and the exact value of b [4 marks]	Do not write outside the box
	<i>a</i> = <i>b</i> =	9
	Turn over for the next question	
	Turn over ▶	•

12 (a)	Use the substitution $u^2 = x - 2$ to find $\int x \sqrt{(x-2)} dx$	
		[5 marks]
	Answer	

Do not write
outside the
box

Cive your ensures in the form $x = \frac{2}{(f(x))^2}$	
Give your answer in the form $y = \frac{2}{225} (f(x))^2$	ן 7
	[· ·
Answer	

12 (b)

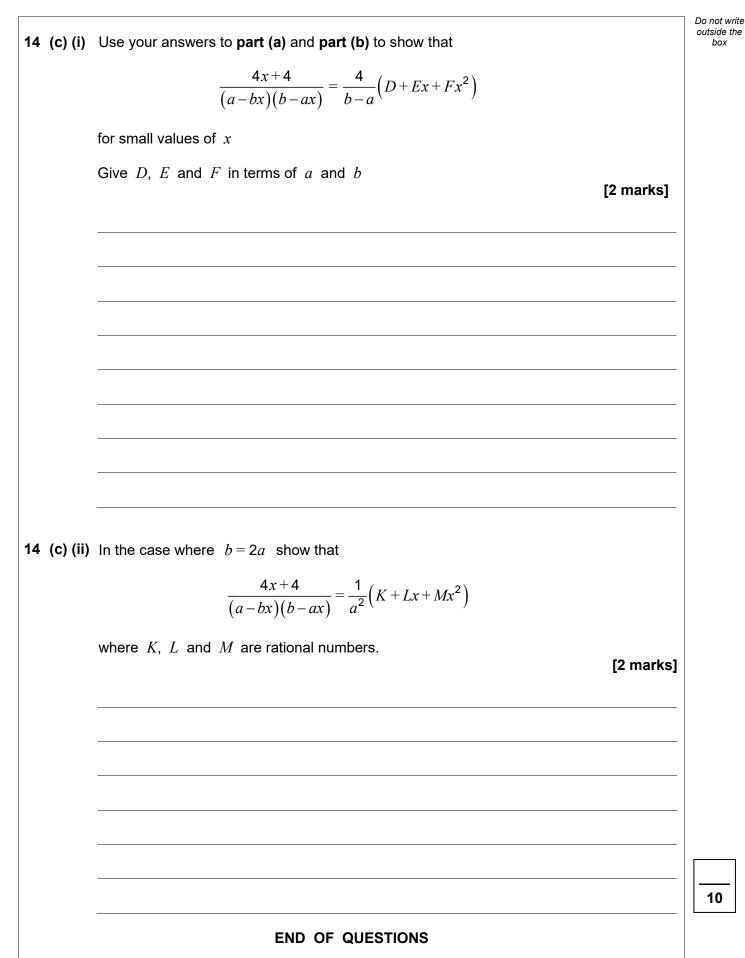
It is given that

12

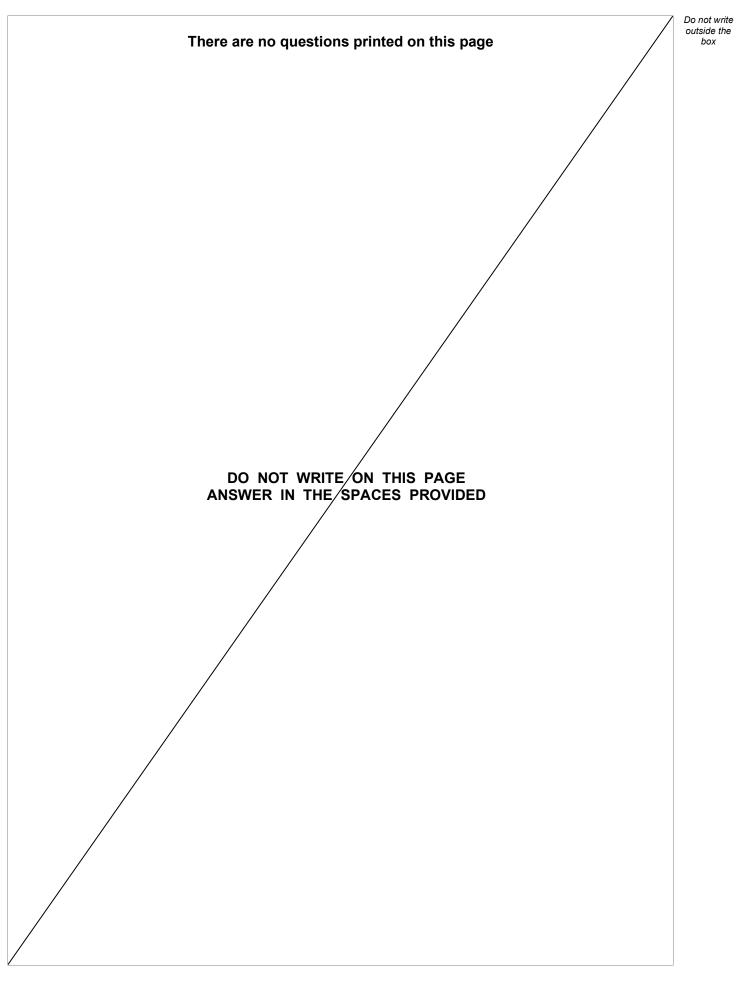
 $\frac{1}{x}\frac{\mathrm{d}y}{\mathrm{d}x} = \sqrt{2y(x-2)}$

Do not write outside the box

A curve is defined by the parametric equations	
$x = \frac{2t}{t-1}$ and $y = t - \frac{1}{t}$	
Find an equation of the tangent to the curve at the point where $t = 2$	
Give your answer in the form $px + qy = r$ where p , q and r are integer	5. [7 marks]

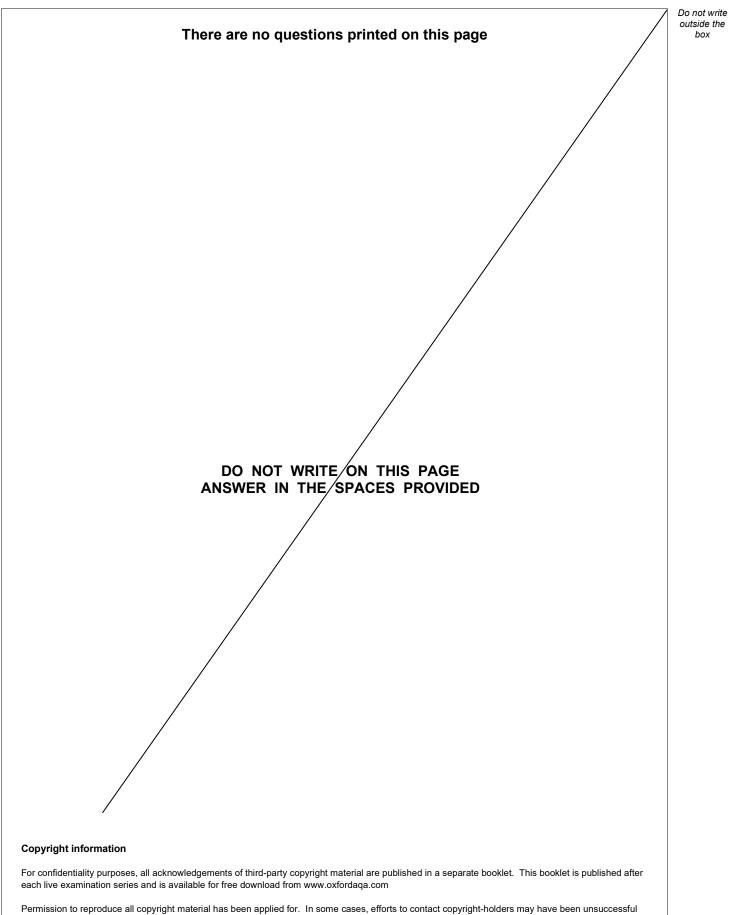


13 (b) Find a Cartesian equation of this curve.	
Give your answer in the form $y = \frac{a(x-1)}{x(x-b)}$ where <i>a</i> and <i>b</i> are integers.	
Give your answer in the form $y = \frac{1}{x(x-b)}$ where <i>u</i> and <i>b</i> are integers.	
	[3 marks]
Answer	



14	It is given that	Do not writ outside the box
	$\frac{4x+4}{(a-bx)(b-ax)} = \frac{P}{a-bx} + \frac{Q}{b-ax}$	
	where:	
	a and b are constants such that $a \neq b$	
	P is a rational function of a and b	
	Q is a rational function of a and b	
14 (a)	Find P and Q in terms of a and b	
	[4 marks]	
	<i>P</i> = <i>Q</i> =	
14 (b)	Find the binomial expansion of $(a - bx)^{-1}$ up to and including the term in x^2	
	[2 marks]	
	Answer	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.



Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2025 OxfordAQA International Examinations and its licensors. All rights reserved.

IB/G/Jan25/MA03