OXFORDAQA

INTERNATIONAL QUALIFICATIONS

Please write clearly ir	ו block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

INTERNATIONAL AS FURTHER MATHEMATICS

(9665/FM02) Unit FPSM1 Pure Mathematics, Statistics and Mechanics

Thursday 9 January 2025 07:00 GMT Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the OxfordAQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- There are three sections to this paper.
- The maximum mark for this paper is 80. There are 40 marks for **Section A**, 20 marks for **Section B** and 20 marks for **Section C**.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
TOTAL	

		Section A
		Pure Mathematics
		Answer all questions in the spaces provided.
1		A curve passes through the point (2, 1) and satisfies the differential equation
		$\frac{\mathrm{d}y}{\mathrm{d}x} = x - \sqrt{\sin y}$
		where y is measured in radians.
1	(a)	Use Euler's step-by-step method with a step length of 0.1 to estimate the value of y when $x = 2.2$
		Give your answer to three decimal places. [5 marks]
		Answer

1 (b)	Explain how you could use Euler's step-by-step method to find an improved estimate for the value of y when $x = 2.2$ [1 mark]	outside the box
		6
	Turn over for the next question	
	Turn over ▶]

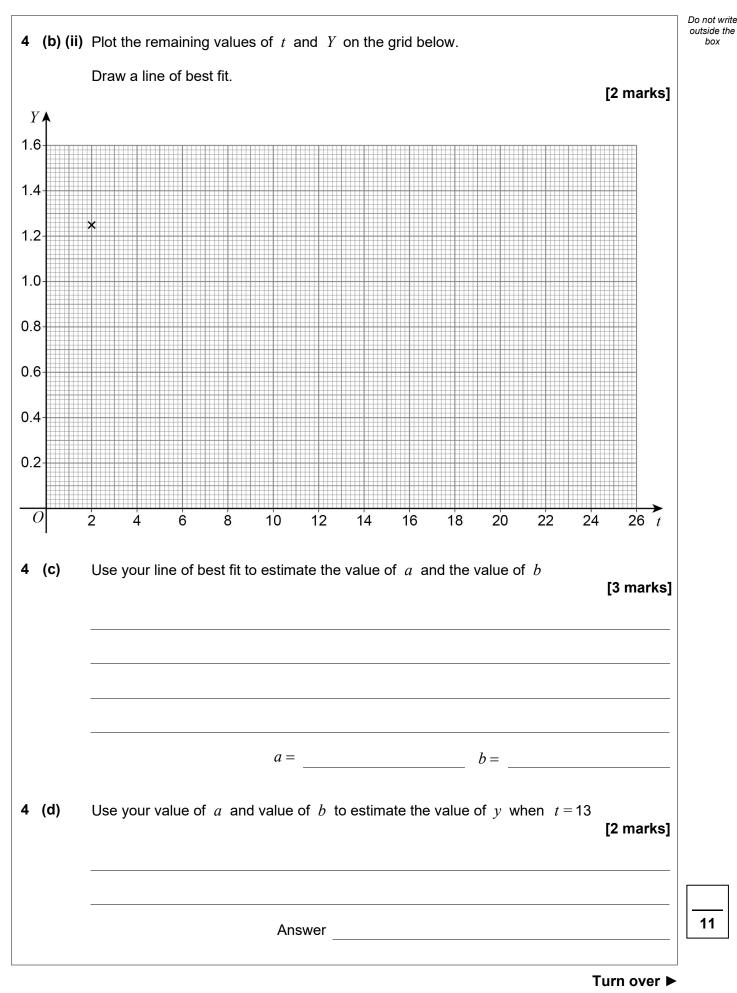
ſ

Do not write

2		The matrix A is defined by $\mathbf{A} = \begin{bmatrix} 2 & 3 \\ p & -2 \end{bmatrix}$ where <i>p</i> is a constant.	Do not wi outside ti box
2	(a)	In the case when A is singular, find the value of p [2 marks]	
		Answer	
2	(b)	Show that $\mathbf{A}^2 = (k + np)\mathbf{I}$ for all values of <i>p</i> , where I is the 2 × 2 identity matrix	
		and k and n are constants. [2 marks]	

2 (c)	In the case when $p = -1$ find the equations of the invariant lines of the transformation represented by the matrix A [6 marks]	Do not v outside box
	Answer	10

3 The equation
$$\frac{1}{3}x^3 - 8x^2 + 62x - 150 = 0$$
 has one real root α
The Newton-Raphson method is to be used once to find an improved approximation to α
3 (a) Explain why an initial value of $x_1 = 8$ would **not** give an improved approximation to α
after one iteration.
Draw an appropriate straight line on the graph of $y = \frac{1}{3}x^3 - 8x^2 + 62x - 150$ below as part of your explanation.
2 marks]
 $y = \frac{1}{2} \frac{1}{4} \frac{1}{6} \frac{1}{8} \frac{1}{10} \frac{1}{12} \frac{1}{x}$



			Do not write
3	(b)	Use the Newton–Raphson method once with the initial value $x_1 = 5$ to find an improved	outside the box
		approximation, x_2 , to α	
		Give your answer to three decimal places.	
		[4 marks]	
			6
		Answer	•
		Turn over for the next question	

	The	vanabi	~			,		
				У	$a = a \times b^t$			
	whei	e a a	nd b are co	onstants.				
(a)	Shov	v that t	here is a line	ear relations	hip between	t and Y w	where $Y = lo$	$\mathbf{Q}_{to} \mathbf{V}$
					·			[2 marks]
<i>.</i>				somo valuo	s of t and r	v obtained i	n an experin	aant
(D)	The	table b	elow shows	Some value		,		ient.
(D)	The							
D)	The	t	2	5	10	18	22	
0)	The							
		t y	2 17.9	5 12.4	10	18	22	
	Com	t y plete t	2 17.9 he table belo	5 12.4 ow.	10 6.7	18	22	
	Com	t y plete t	2 17.9	5 12.4 ow.	10 6.7	18	22	[2 marks]
(b) (b) (i)	Com	t y plete t	2 17.9 he table belo	5 12.4 ow.	10 6.7	18	22	
	Com	t y plete t your v	2 17.9 he table belo values of <i>Y</i>	5 12.4 ow. to two decim	10 6.7 nal places.	18 2.3	22	

2 marks]

Describe fully the transformation T [5 marks]	in the line $y = \frac{1}{2}x$	5 (b) The matrix N is defined by $\mathbf{N} = \begin{bmatrix} -\frac{5}{13} & \frac{12}{13} \\ \frac{12}{13} & \frac{5}{13} \end{bmatrix}$ The single transformation T is the combination of a reflection followed by the transformation represented by N
	[5 marks]	
Turn over for the next section	 7	Turn over for the next section

	Section B	
	Statistics	
	Answer all questions in the spaces provided.	
6	In a company there are three departments: A , B and C	
	Each employee works in exactly one department.	
	37% of employees work in department A	
	21% of employees work in department <i>B</i>	
	Employees of the company either have a permanent contract or a temporary contract.	
	68% of employees in department <i>A</i> have permanent contracts.	
	25% of employees in department B have permanent contracts.	
	83% of employees in department C have permanent contracts.	
6 (a)	Draw a tree diagram to represent this information. [2 marks]	

6 (b)	An employee with a temporary contract is chosen at random.	Do not write outside the box
	Find the probability that the employee works in department <i>B</i> [3 marks]	
	Answer	5
	Answer	
	Turn over for the next question	
L	Turn over ▶	

IB/G/Jan25/FM02

		Do not write
7	The random variable X has a geometric distribution with parameter 0.3	outside the box
	The random variable Y has a binomial distribution with parameters $n = 20$ and $p = 0.3$	
	The random variables X and Y are independent.	
	The random variable T is given by	
	T = aX + (1 - a)Y	
	where a is a constant.	
	The value of a is chosen so that the variance of T is as small as possible.	
7 (a)	Show that the value of $r_{ij} = 27$	
7 (a)	Show that the value of a is $\frac{27}{77}$ [5 m	narks]
	-	-

Do not write outside the box

7 (b)	Find the mean of T	
		3 marks]
	Answer	
	Turn over for the next question	

		Do not wri
8	A player plays a game which consists of three rounds.	outside the box
	In each round, the player either moves	
	• forward one step with probability $\frac{3}{5}$	
	or	
	• backward one step with probability $\frac{2}{5}$	
	The movement of the player in any round is independent of their movement in all previous rounds.	
	The random variable X_i is such that	
	$X_i = \begin{cases} +1 & \text{if the player moves forward in round } i \\ -1 & \text{if the player moves backward in round } i \end{cases}$	
	The random variable Y is given by $Y = X_1 + X_2 + X_3$	
8 (a)	Find $G_Y(t)$, the probability generating function of Y	
	Give your answer in the form $At^{-3} + Bt^{-1} + Ct + Dt^3$ where A, B, C and D are constants.	
	[4 marks]	
		-
		-
		-
		-
		-
		_
		-
		-
		-
		_
		-
		-
		-

Do not write
outside the
box

		Answer
8	(b)	The player wins the game if after three rounds they are three steps from the starting position.
		Find the probability that the player wins the game.
		[1 mark]
		Answer
8	(c)	Use differentiation to find the mean of Y
		[2 marks]
		Answer

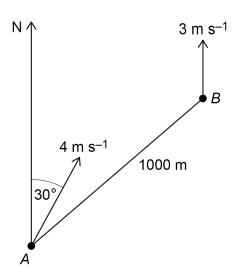
	Section C
	Mechanics
	Answer all questions in the spaces provided.
•	
9	The equation
	$y = x \tan \theta - \frac{g x^2}{2V^2 \cos^2 \theta}$
	can be used to find the path of a projectile, where
	x = horizontal displacement
	y = vertical displacement
	V = speed of projection
	heta= angle of projection
	g= acceleration due to gravity
9 (a)	Use the given equation to show that [tanθ]=1 and [cos ² θ]=1 [4 marks] [4 marks] [5 m

Section C

Do not write outside the box

9 (b)	Explain the meaning of $[\tan\theta] = 1$	Do not write outside the box
- ()	[1 mark]	
		5
	Turn over for the next question	
	rum over for the next question	
	Turn over ►	
	1 9 IB/G/Jan25/FM02	

10		A ball of mass 0.04 kg falls vertically from rest and bounces on a horizontal surface.
		The ball collides with the surface with speed 5 m s ⁻¹ and leaves the surface with speed 2 m s ⁻¹
10	(a)	Write down the coefficient of restitution between the ball and the surface. [1 mark]
		Answer
		Answer
10	(b)	Find the magnitude of the impulse exerted on the ball by the surface. [2 marks]
		Answer
10	(C)	The ball is in contact with the surface for 0.2 seconds.
10	(c) (i)	A simple model assumes that a constant force of magnitude F newtons acts on the ball while it is in contact with the surface.
		Find the value of F
		[2 marks]
		Answer



10	(c) (ii)	Another model assumes that a variable force acts on the ball while it is in contact with the surface.	Do not write outside the box
		The magnitude of this force is given by	
		kt(1-5t)	
		where k is a constant and t seconds is the time after the ball first makes contact with the surface.	
		Find the value of <i>k</i> [4 marks]	
		Answer	9

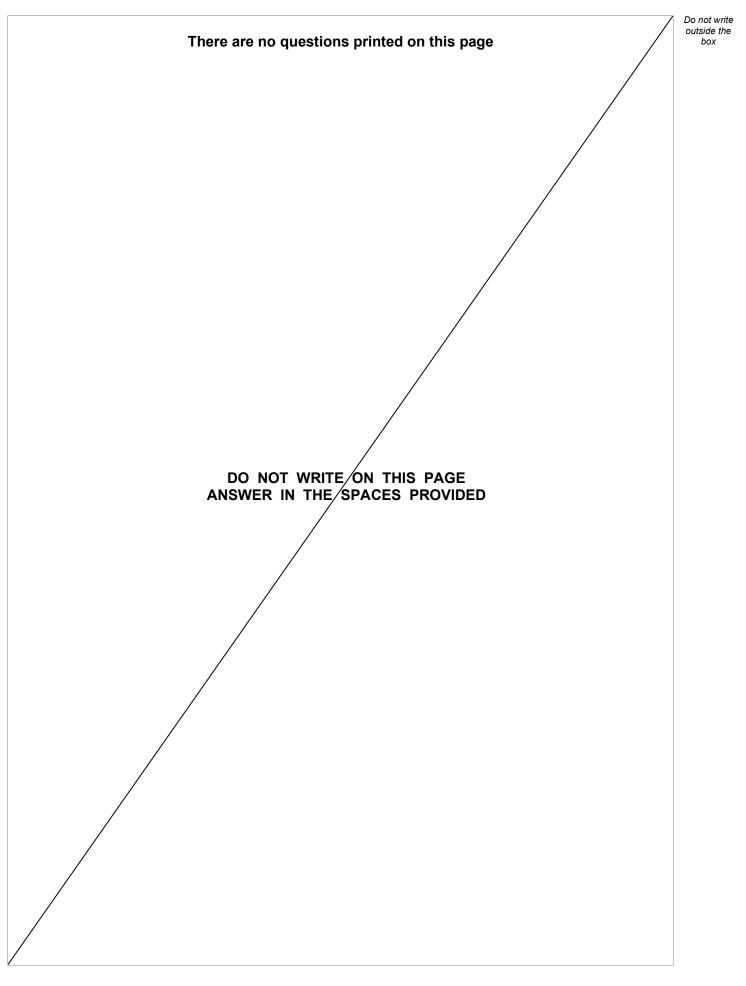
Turn over 🕨

11Two boats A and B are moving with constant velocity on still water.Boat A is moving on a bearing of 030° with a velocity of 4 m s⁻¹Boat B is moving due north with a velocity of 3 m s⁻¹Boat B is initially 1000 metres north east of boat AThe diagram shows the initial positions and velocities of the two boats.

Find the minimum distance between the two boats.

Give your answer to the nearest metre.

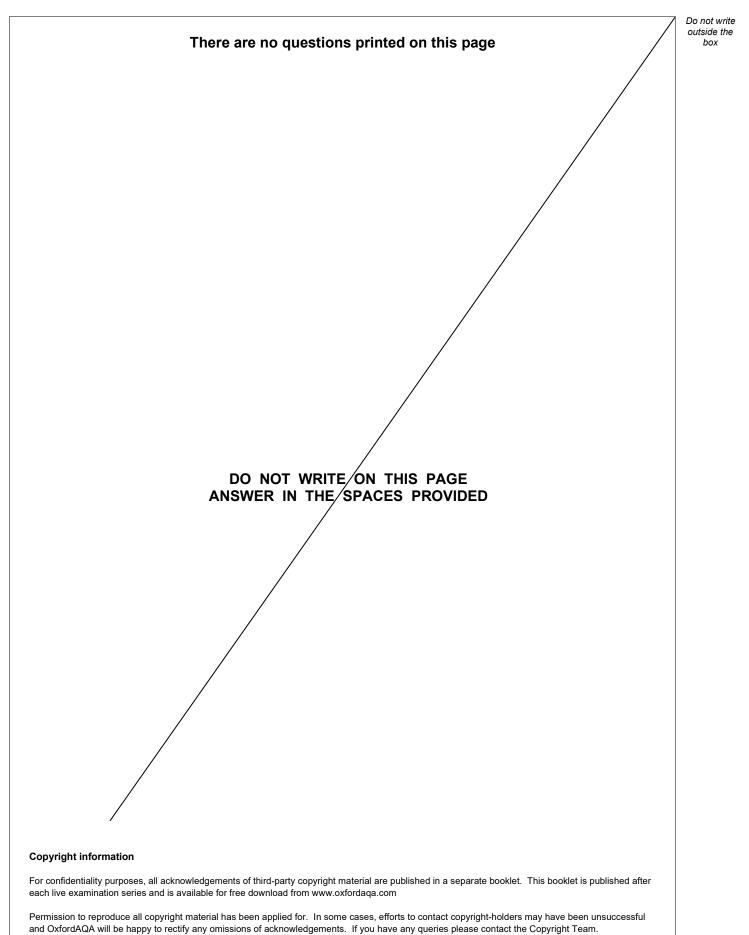
[6 marks]


Do not write outside the

box

	Do not write
	outside the box
	_
	-
	-
	-
	-
	-
	-
	_
	-
	-
	-
	-
	-
	-
	_
	_
	-
	-
	-
	-
	-
Answer	6
END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.



Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Copyright © 2025 OxfordAQA International Examinations and its licensors. All rights reserved.

IB/G/Jan25/FM02