

INTERNATIONAL QUALIFICATIONS

INTERNATIONAL A-LEVEL MATHEMATICS

MA04

(9660/MA04) Unit S2 Statistics

Mark scheme

January 2025

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from www.oxfordaqa.com

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2025 OxfordAQA International Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

I	Μ	Mark is for method		
I	m	Mark is dependent on one or more M marks and is for method		
	A	Mark is dependent on M or m marks and is for accuracy		
B Mark is independent of M or m marks and is for method and acc				
I	E	Mark is for explanation		
√c	or ft	Follow through from previous incorrect result		
	CAO	Correct answer only		
	cso	Correct solution only		
1	AWFW	Anything which falls within		
1	AWRT	Anything which rounds to		
1	ACF	Any correct form		
	AG	Answer given		
ę	SC	Special case		
(oe	Or equivalent		
1	A2, 1	2 or 1 (or 0) accuracy marks		
-	– <i>x</i> EE	Deduct <i>x</i> marks for each error		
I	NMS	No method shown		
I	PI	Possibly implied		
9	SCA	Substantially correct approach		
\$	sf	Significant figure(s)		
(dp	Decimal place(s)		
I	ISW	Ignore subsequent working		

Q	Answer	Marks	Comments
1(a)	The set of values for the test statistic which lead to rejection of the null hypothesis	B1	oe
		1	

Q	Answer	Marks	Comments
1(b)(i)	$P(X \le 5) = 0.0480(<5\%)$		
	$P(X \le 6) = 0.1034 (> 5\%)$	IVI 1	Any one correct or correct CR
	$CR(X \le 5)$	A1	Need both probabilities oe
	$P(X \ge 15) = 0.0607(>5\%)$		Any one correct or correct CP
	$P(X \ge 16) = 0.0308(<5\%)$		Any one contect of contect of
	CR (<i>X</i> ≥ 16)	A1	Need both probabilities oe
		4	

Q	Answer	Marks	Comments
1(b)(ii)	As 17 is in the CR we reject H_0	B1ft	oe (must define a CR in (b)(i))
		1	

Q	Answer	Marks	Comments
1(c)(i)	n must be large and p must be small	B1	oe
		1	

Q	Answer	Marks	Comments
1(c)(ii)	$[np =] 80 \times 0.05 = 4$	B1	oe
		1	

Q	Answer	Marks	Comments
1(d)(i)	P(W = 0) = 0.0183(<5%) $P(W \le 1) = 0.0916(>5\%)$	M1	Any one correct Allow $P(Y \le 0)$
	CR {0}	A1	Need both probabilities oe
		2	

Q	Answer	Marks	Comments
1(d)(ii)	As 1 is not in the CR we do not reject H_0	B1ft	Oe (must define a CR in (d)(i))
		1	

11

Question 1 Total

Q	Answer	Marks	Comments
2(a)	$\int_{2}^{4} ct^{3} dt + \int_{4}^{6} \frac{1}{10} dt = 1$	М1	Correct integral set equal to 1 with at least 1 correct integration oe
	$\left[\frac{ct^4}{4}\right]_2^4 + \left[\frac{t}{10}\right]_4^6 = 1$	М1	Arriving at a linear equation for c
	$[64c-4c]+\left[\frac{6}{10}-\frac{4}{10}\right]=1$		
	$60c + \frac{1}{5} = 1$		
	$c = \frac{1}{75}$	A1	AG Requires immediate line after integration
		3	

Q	Answer	Marks	Comments
2(b)(i)	$\left[\int t \times f(t) dt\right] = \int_{2}^{4} ct^{4} dt + \int_{4}^{6} \frac{1}{10} t dt$	M1	PI Identifies correct integral oe
	$=\frac{1}{75}\left[\frac{t^{5}}{5}\right]_{2}^{4}+\left[\frac{t^{2}}{20}\right]_{4}^{6}$	М1	PI Correct integration with an attempt to substitute limits Allow with ' <i>c</i> '
	$\frac{992}{375} + 1 = \frac{1367}{375}$	A1	Oe
		3	

Q	Answer	Marks	Comments
2(b)(ii)	4-5E(T)	M1	PI
	$=4-5\times\frac{1367}{375}$		
	$=-\frac{1067}{75}$	A1ft	oe
		2	

Q	Answer	Marks	Comments
2(c)(i)	$\left[E(T^{2})=\int t^{2}\times f(t)dt\right]=\int_{2}^{4}ct^{5}dt+\int_{4}^{6}\frac{t^{2}}{10}dt$	M1	Identifies correct integral
	$=\frac{1}{75}\left[\frac{t^{6}}{6}\right]_{2}^{4}+\left[\frac{t^{3}}{30}\right]_{4}^{6}$	М1	Correct integration
	$=\frac{1}{75}\left[\frac{4^{6}}{6}-\frac{2^{6}}{6}\right]+\left[\frac{6^{3}}{30}-\frac{4^{3}}{30}\right]$		
	$E\!\left(T^2\right)\!=\!\frac{1052}{75}$	A1	PI
	$\operatorname{Var}(T) = \operatorname{E}(T^2) - \operatorname{E}(T)^2$		
	$=\frac{1052}{75} - \left(\frac{1367}{375}\right)^2$	M1	ft Their $E(T^2)$
	= 0.738211 = 0.738 [3 sf]	A1	Must see both fractions used correctly or the value to 4 or more significant figures AG
		5	

Q	Answer	Marks	Comments
2(c)(ii)	25 Var (T)	M1	Allow use of 0.738
	= 25×0.738		
	= 18.5 [3 sf]	A1	AWRT 18.5
		2	

15

Q	Answer	Marks	Comments
3	$H_0: \mu = 205$ $H_1: \mu > 205$	B1	Condone mu or other letters except \bar{x}
	$\overline{X} \sim N\left(205, \frac{30^2}{10}\right)$	B1	PI by correct standardisation formulae
	$z = \frac{220.5 - 205}{\frac{30}{\sqrt{10}}}$	M1	PI by correct <i>z</i>
	z = 1.633(843458)	A1	AWRT 1.63 or exact value $\frac{31\sqrt{10}}{60}$
	$z_{\text{critical}} = 1.6449$	B1	or $P\left(z > \frac{31\sqrt{10}}{60}\right) = 0.9489$ allow allow - 1.6449 or 0.94845 from tables or comparison of $P(\overline{T} > 220.5) = 0.0511$ to 0.05155 with 5%
	Do not reject H ₀ as $z < z_{critical}$ or 1.63< 1.64	A1ft	Allow 'accept H_0 ' Comment about H_0 and 0.0511 to 0.05155 > 0.05 Allow $ z < 1.6449$ Correct conclusion based upon ft their z (signs need to be compatible)
	Insufficient evidence to support the claim that Nok's lap times have increased at the 5% level of significance	E1	Correct statement must be in context and must follow from fully correct solution
	Question 3 total	7	
	Question 3 total	1	

Q	Answer	Marks	Comments
4(a)	$\frac{e^{-\lambda} \times \lambda^8}{8!} = \frac{125}{2688} \times \frac{e^{-\lambda} \times \lambda^5}{5!}$	M1	PI by simplified equation
	$\lambda^3 = \frac{125}{8}$	M1	Forms a simplified equation for λ or λ^3
	$\lambda = 2.5$	A1	CAO
		3	

Q	Answer	Marks	Comments
4(b)(i)	$P(X < 5) = P(X \le 4)$	M1	РІ
	= 0.0293 [3 sf]	A1	CAO
		2	

Q	Answer	Marks	Comments
4(b)(ii)	$\lambda = 5$	B1	PI by 0.9980 or 0.8666
	$P(7 < X < 13) = P(X \le 12) - P(X \le 7)$ = 0.9980 - 0.8666	М1	PI Allow sight of one correct probability for the method mark
	= 0.131	A1	CAO
		3	

4(c) $\lambda_e = \frac{1}{3}$ (number of advertisements per minute)B1PI (or $\lambda_e = \frac{5}{3}$) (number of advertisements per 5 minutes) $P(X > 5) = 1 - \left(1 - e^{-\frac{1}{3} \times 5}\right)$ M1PI $P(X > 1) = 1 - \left(1 - e^{-\frac{5}{3}}\right)$ $= 0.189$ A1CAO	Q	Answer	Marks	Comments
$P(X > 5) = 1 - \left(1 - e^{-\frac{1}{3} \times 5}\right)$ $= 0.189$ M1 PI P(X > 1) = 1 - \left(1 - e^{-\frac{5}{3}}\right) A1 CAO 3	4(c)	$\lambda_{\rm e} = \frac{1}{3}$ (number of advertisements per minute)	B1	PI (or $\lambda_e = \frac{5}{3}$) (number of advertisements per 5 minutes)
= 0.189 A1 CAO 3		$P(X > 5) = 1 - \left(1 - e^{-\frac{1}{3} \times 5}\right)$	M1	PI $P(X > 1) = 1 - \left(1 - e^{-\frac{5}{3}}\right)$
3		= 0.189	A1	CAO
			3	

Question 4 tota	11	
-----------------	----	--

Q	Answer	Marks	Comments
5(a)	$P(z < a) = 0.1 \Rightarrow a = -1.2816$ and/or $P(z > b) = 0.2 \Rightarrow b = 0.8416$	B1	Allow $a = \pm 1.2816$
	$-1.2816 = \frac{1.9 - \mu}{\sigma}$ or $0.8416 = \frac{3.8 - \mu}{\sigma}$	M1	Signs must be compatible
	$-1.2816 = \frac{1.9 - \mu}{\sigma}$ and $0.8416 = \frac{3.8 - \mu}{\sigma}$	A1	
	Attempt to solve simultaneously eg $\frac{3.8 - \mu}{0.8416} = \frac{\mu - 1.9}{1.2816}$	M1	Reduction to one unknown
	$\mu = 3.05$ [3 sf]	A1	CAO
	$\sigma = 0.895$ [3 sf]	A1	CAO
		6	

Q	Answer	Marks	Comments
5(b)	$P(z > k) > 0.74 \implies k = 0.6433$	B1	PI By correct standardisation formula
	$\frac{0.82 - 0.80}{\frac{0.25}{\sqrt{n}}} > 0.6433$	M1	
	$\sqrt{n} > \frac{0.6433 \times 0.25}{0.02}$	m1	Rearranged to find l or \sqrt{n}
	$\sqrt{n} > 8.04125 \implies n > 64.66 \implies n = 65$	A1	CAO
		4	

Question 5 total	10	
------------------	----	--

Q	Answer	Marks	Comments
6(a)(i)	(through symmetry) $k = 13$	B1	
		1	

Q	Answer	Marks	Comments
6(a)(ii)	$5 \times \left(\frac{0.125 + h}{2}\right) = 0.5$		
	h = 0.075	B1	
	$m = \frac{0.125 - 0.075}{8 - 3} = 0.01$	M1	
	$\left[f(8)=\right] 0.01 \times 8 + c_1 = 0.125$	M1	
	$c_1 = 0.045$		
	$\left[f(8)=\right] -0.01 \times 8 + c_2 = 0.125$	М1	oe Use of $f(8)$ to find a correct equation when $8 \le x \le 13$ or $-m$
	<i>c</i> ₂ = 0.205		
	$0.01x + 0.045$ $3 \le x \le 8$		
	$f(x) = \begin{cases} -0.01x + 0.205 & 8 < x \le 13 \\ 0 & \text{otherwise} \end{cases}$	A1	АСГ
		5	

Q	Answer	Marks	Comments
6(b)(i)	<i>a</i> = 1	B1	CAO
		1	

Q	Answer	Marks	Comments
6(b)(ii)	$G(t) = \frac{1}{5}t - 4$	M1	PI oe
	$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{G}\left(t\right) = \frac{1}{5}$	M1	Differentiation of their $G(t)$
	$g(t) = \begin{cases} \frac{1}{5} & 20 \le t \le 25 \\ 0 & \text{otherwise} \end{cases}$	A1	
		3	

|--|

Q	Answer	Marks	Comments
7(a)(i)	$\left[\frac{\sum x}{n}\right] = \frac{7187}{800} [g]$	B1	oe 8.98375 Condone AWRT 8.984
		1	

Q	Answer	Marks	Comments
7(a)(ii)	$\frac{1}{7} \left(645.6661 - \frac{71.87^2}{8} \right)$	М1	PI
	$=\frac{319}{560000}$ [g ²]	A1	oe Allow AWRT 0.00057
		2	

Q	Answer	Marks	Comments
7(b)	$H_0: \mu = 9$ $H_1: \mu < 9$	B1	Both hypotheses
	$\overline{X} \sim N\left(9, \frac{\frac{319}{560000}}{8}\right)$	М1	$\overline{X} \sim N\left(\mu, \frac{s^2}{8}\right)$ PI
	$t = \frac{8.98375 - 9}{\sqrt{\frac{319}{560000}}} =$	М1	Calculates with their s^2
	=-1.925737248	A1	AWRT –1.93
	$t_7(0.05) = -1.895$	B1	Allow ±
	Reject H ₀ as -1.92(57) < -1.895	A1ft	provided signs are consistent Implied by correct conclusion in context. Follow through their t and t_7
	Sufficient evidence to suggest that the mass of the packets is less than advertised at the 5% level of significance	E1	Must not be definitive
		7	

		Question 7 total	10	
--	--	------------------	----	--

Q	Answer	Marks	Comments
8(a)	$1 - e^{-\lambda m} = 0.5$ $e^{-\lambda m} = 0.5$	M1	Ы
	$-\lambda m = -\ln 2 \implies m = \frac{\ln 2}{\lambda}$	A1	
	$\ln 2 < 1 \Rightarrow \frac{\ln 2}{\lambda} < \frac{1}{\lambda} \Rightarrow m < E(X)$	A1	Allow 0.693… < 1 AG must be convincingly show
		3	

Q	Answer	Marks	Comments
8(b)	$0.75 = 1 - e^{-\lambda u} \Longrightarrow u = \frac{\ln 4}{\lambda}$		Oe
	$0.25 = 1 - e^{-\lambda s} \Longrightarrow s = \frac{\ln\left(\frac{4}{3}\right)}{\lambda}$	B1	A correct expression for u or a correct expression for s
	$u-s = \frac{\ln 4}{\lambda} - \frac{\ln\left(\frac{4}{3}\right)}{\lambda}$	M1	
	$u-s=\frac{\ln 3}{\lambda}$	A1	
		3	

Question 8 Total	6	
------------------	---	--