

INTERNATIONAL QUALIFICATIONS

INTERNATIONAL AS **MATHEMATICS**

MA02

(9660/MA02) Unit PSM1 Pure Mathematics, Statistics and Mechanics

Mark scheme

January 2025

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from www.oxfordaqa.com

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2025 OxfordAQA International Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

Μ	Mark is for method
m	Mark is dependent on one or more M marks and is for method
Α	Mark is dependent on M or m marks and is for accuracy
В	Mark is independent of M or m marks and is for method and accuracy
E	Mark is for explanation
$\sqrt{\mathbf{or}}$ ft	Follow through from previous incorrect result
CAO	Correct answer only
CSO	Correct solution only
AWFW	Anything which falls within
AWRT	Anything which rounds to
ACF	Any correct form
AG	Answer given
SC	Special case
oe	Or equivalent
A2, 1	2 or 1 (or 0) accuracy marks
– <i>x</i> EE	Deduct <i>x</i> marks for each error
NMS	No method shown
PI	Possibly implied
SCA	Substantially correct approach
sf	Significant figure(s)
dp	Decimal place(s)
ISW	Ignore subsequent working

Q	Answer	Marks	Comments
1(a)	<i>y</i>	B1	Positive exponential curve of the correct form passing through the third, fourth and first quadrants
	O 5 x	В1	Correct value of <i>x</i> -intercept provided a graph is drawn. Condone given as coordinates
	- <u>31</u> 8	B1	oe Correct value of <i>y</i> -intercept provided a graph is drawn. Condone given as coordinates
		3	

Q	Answer	Marks	Comments
1(b)	$\begin{bmatrix} 10 = 2^{k-3} - 4 \Rightarrow 2^{k-3} = 14 \Rightarrow \end{bmatrix}$ $k - 3 = \log_2 14 \text{ or } (k - 3)\log_a 2 = \log_a 14$ or $2^k \times \frac{1}{8} = 14$	М1	oe PI x = k and $y = 10$ substituted and logarithms used to form a linear equation in k with at least one side correct. or x = k and $y = 10$ substituted with use of index rule to write as an equation in 2^k Condone x used for k throughout
	$\begin{bmatrix} k = 3 + \log_2 14 \Rightarrow \end{bmatrix}$ $\begin{bmatrix} k = 3 + \log_2 14 \Rightarrow \end{bmatrix}$ $\begin{bmatrix} k = 3 + \log_2 14 \text{ or } k - \log_2 8 = \log_2 14 \text{ or } k = \log_2 14 \text{ or } k = 112 \text{ or } k = 112$	M1 A1	oe PI Substitutes $\log_2 8$ for 3 to obtain a correct equation. or Correct value of 2^k
			Must be in the correct form
		3	

Question 1 Total	6	

Q	Answer	Marks	Comments
2(a)	$\frac{1}{2} \times 6^2 \times \theta = 16.2$	M1	oe Forms correct equation using $\frac{1}{2}r^2\theta$
	$\theta = \frac{16.2}{18}$ and $\theta = 0.9$	A1	oe Correct calculation with θ as subject leading to AG
		2	

Q	Answer	Marks	Comments
2(b)(i)	[Area of Triangle $ACD =$] $\frac{1}{2} \times 6 \times 14 \times \sin 0.9$	M1	oe Correct method for calculating the area with values substituted. PI by correct area of the triangle or correct final answer.
	[Area of Triangle <i>ACD</i> =] 32.89973 [cm ²]	A1	CAO AWRT 32.9 PI by correct final answer.
	[Shaded Area = 32.89973 – 16.2 =] 16.7 [cm ²]	A1ft	CAO AWRT 16.7 ft their area of the triangle provided M1 scored.
		3	

Q	Answer	Marks	Comments
2(b)(ii)	$[r\theta = 6 \times 0.9 =] 5.4 [cm]$	B1	Correct length of arc <i>BD</i> PI by correct final answer.
	$\left[CD ^2 \right] = 6^2 + 14^2 - 2 \times 6 \times 14 \times \cos 0.9$ or $\left[CD ^2 \right] = 36 + 196 - 168 \cos 0.9$	М1	oe Correct application of the Cosine Rule with values substituted. PI by correct length of <i>CD</i> or 127.56 or correct final answer.
	$\left[CD = \sqrt{127.56952} \right] = 11.29466 [cm]$	Α1	Correct length of <i>CD</i> AWRT 11.3 PI by correct final answer.
	[Perimeter = 11.29466+5.4+(14-6)=]24.7 [cm]	A1	Correct perimeter AWRT 24.7
		4	
	r		

		Question 2 Total	9	
--	--	------------------	---	--

Q	Answer	Marks	Comments
3(a)	$\left[\left(\frac{9+12}{2},\frac{5+2}{2}\right)=\right] \left(\frac{21}{2},\frac{7}{2}\right)$	B1	oe Correct mid-point of QR
	$\left[\left(\frac{5-2}{9-12}\right)=\right] -1$	B1	Correct gradient of <i>QR</i> PI in later working
	$y - \frac{7}{2} = x - \frac{21}{2}$ or $y = x - 7$ or $\frac{\frac{7}{2}}{\frac{21}{2} - x}$	М1	oe Correct equation of the perpendicular bisector of <i>QR</i> ACF or Correct expression for the gradient of the line from the mid-point of <i>QR</i> to <i>P</i>
	$[y=0 \Rightarrow] -\frac{7}{2} = x - \frac{21}{2} \text{ and } x = 7$ or $[y=0 \Rightarrow] 0 = x - 7 \text{ and } x = 7$ or $\frac{\frac{7}{2}}{\frac{21}{2} - x} = 1 \Rightarrow x = 7$	A1	oe Indicates $y = 0$ implies $x = 7$ Could see $y = 0$ substituted into the equation of the perpendicular bisector of QR or Sets the expression for the gradient of the line from the mid-point of QR to P equal to 1 and states $x = 7$ Must be convincingly shown
		4	

Q	Answer	Marks	Comments
3(b)(i)	(17, 4)	B1	Correct centre of C ₂
	$[r^{2} =] (9-7)^{2} + 5^{2} \text{ or } [r =] \sqrt{(9-7)^{2} + 5^{2}}$ or $[r^{2} =] (12-7)^{2} + 2^{2} \text{ or } [r =] \sqrt{(12-7)^{2} + 2^{2}}$	M1	Correct method for finding the radius or the square of the radius of C_1 PI by $\left[r^2 = \right] 29$ or $\left[r = \right] \sqrt{29}$
	$(x-17)^{2}+(y-4)^{2}=29$	A2,1	A1: Correct LHS of equation in the correct form A2: Correct equation in the correct form
		4	

Q	Answer	Marks	Comments
3(b)(ii)	Translation	E1	Transformation named
	[10] [4]	E1ft	Correct vector. ft Their equation of <i>C</i> ₂ from part (b)(i)
		2	
		<u> </u>	

Question 3 to	10	Question 3 total 10
---------------	----	---------------------

Q	Answer	Marks	Comments
4(a)(i)	7	B1	
		1	

Q	Answer	Marks	Comments
4(a)(ii)	[x=] 227°	B1	
		1	

Q	Answer	Marks	Comments
4(b)(i)	$\begin{bmatrix} \frac{31-29\sin\theta-21\cos^2\theta}{2-3\sin\theta} = \\ \frac{31-29\sin\theta-21(1-\sin^2\theta)}{[2-3\sin\theta]} \\ \text{or} \\ \frac{31-29\sin\theta-21+21\sin^2\theta}{[2-3\sin\theta]} \\ \text{or} \\ \frac{10-29\sin\theta+21\sin^2\theta}{[2-3\sin\theta]} \\ \end{bmatrix}$	М1	oe Correct use of $\cos^2 \theta + \sin^2 \theta = 1$ to find a correct expression for the numerator in $\sin \theta$ only. Simplified or unsimplified.
	$\frac{(2-3\sin\theta)(5-7\sin\theta)}{2-3\sin\theta}$	М1	oe Correct fraction with numerator factorised.
	$5-7\sin\theta$	A1	САО
		3	

Q	Answer	Marks	Comments
4(b)(ii)	$\begin{bmatrix} 5-7\sin y = 5+4\cos y\\ \Rightarrow \frac{\sin y}{\cos y} = -\frac{4}{7} \Rightarrow \end{bmatrix}$ $\tan y = -\frac{4}{7}$	М1	Rearranges the equation to find the correct value for tan <i>y</i> PI ft their <i>k</i> from part (b)(i)
	[<i>y</i> =] 2.62 , 5.76 [radians]	A2,1	 A1: At least one correct value AWRT 2.62 or AWRT 5.76 A2: Both correct values and no others in the given range. Both must be to 2dp.
		3	

|--|

Q	Answer	Marks	Comments
5(a)	$y = a^{\frac{1}{2}}$ or $a = 64^{x+5}$	B1	For correctly expressing <i>y</i> as a power of <i>a</i> or <i>a</i> as a power of 64 PI by $y^2 = a$
	$y^{2} = 64^{x+5}$ or $y^{2} = 2^{6(x+5)}$ or $y = (64^{x+5})^{\frac{1}{2}}$ or $y = 64^{\frac{1}{2}(x+5)}$	М1	oe Correctly using both equations to obtain a correct equation relating x and y
	$\begin{bmatrix} y = 64^{\frac{1}{2}(x+5)} = (2^{6})^{\frac{1}{2}(x+5)} \Rightarrow \end{bmatrix}$ y = 2 ^{3(x+5)}	Α1	Correct equation in the correct form
		3	

Q	Answer	Marks	Comments
5(b)	$\left[\log_{7}\frac{216}{5}\right] \log_{7}216 - \log_{7}5$	M1	oe Correctly expressing $\log_7 \frac{216}{5}$ as the difference between two logarithms
	$\left[\log_{7} 216 - \log_{7} 5 = \right]$ $\log_{7} 6^{3} - \log_{7} 625^{\frac{1}{4}}$	М1	oe PI Correct expression for $\log_7 \frac{216}{5}$ with powers of 6 and 625 substituted
	$3\log_7 6 - \frac{1}{4}\log_7 625$	М1	oe PI Correct expression using the multiple property of logarithms with both terms
	$\left[\log_7\frac{216}{5}\right] 3q - \frac{1}{4}p$	A1	САО
5(b) Alt	$\left[\log_{7}\frac{216}{5}\right] \log_{7}216 - \log_{7}5$	М1	oe Correctly expressing $\log_7 \frac{216}{5}$ as the difference between two logarithms
	$\begin{bmatrix} \log_7 216 = \end{bmatrix} \log_7 6^3$ and $\begin{bmatrix} \log_7 625 = \end{bmatrix} \log_7 5^4$ or $\begin{bmatrix} \log_7 5 = \end{bmatrix} \log_7 625^{\frac{1}{4}}$	М1	oe PI Correct expression for log ₇ 216 with power substituted. And Correct expression for log ₇ 625 or
	$\begin{bmatrix} \log_7 216 = \end{bmatrix} 3\log_7 6$ and $\begin{bmatrix} \log_7 625 = \end{bmatrix} 4\log_7 5$ or	М1	log ₇ 5 with power substituted. oe PI Correct expressions using the multiple property of logarithms.
	$\left[\log_7 5 = \right] \frac{1}{4} \log_7 625$ $\left[\log_7 \frac{216}{5} = \right] 3q - \frac{1}{4}p$	A1 4	CAO

Question 5 Total 7		Question 5 Total	7	
--------------------	--	------------------	---	--

Q	Answer	Marks	Comments
6(a)	$\left[\begin{pmatrix} 40 \\ 6 \end{pmatrix} \times 0.09^{6} \times (1 - 0.09)^{40 - 6} = \right] 0.0826$	B1	AWRT 0.0826
		1	

Q	Answer	Marks	Comments
6(b)	[P(Number of customers > 4) = 1 – P(Number of customers \leq 4)] 1 – 0.7103	М1	PI By correct answer.
	0.2897	A1	AWRT 0.2897
		2	

Q	Answer	Marks	Comments
6(c)(i)	[Var(Monday) = 40 × 0.09 × (1 − 0.09) =] 3.276	M1	PI Finds variance for first day AWRT 3.28
	[Var(total) = 3.276 + 2.3751 + 2.1294 =] 7.7805	A1	oe AWRT 7.78
		2	

Q	Answer	Marks	Comments
6(c)(ii)	$\frac{7.7805}{0.09(1-0.09)} \text{ or } \frac{7.7805}{0.0819}$	M1	oe Divides their 7.7805 by 0.09(1 – 0.09)
	95	A1	CAO
		2	

Question 6 Total	7	
------------------	---	--

Q	Answer	Marks	Comments
7(a)	$\frac{P(R \cap C')}{P(C')} = \frac{23}{36}$	M1	Forms a correct equation with $P(R \cap C')$ PI by correct value of $P(R \cap C')$
	$P(R \cap C') = \frac{23}{36} \left(1 - \frac{17}{23} \right) = \frac{1}{6}$	A1	Finds correct value of $P(R \cap C')$
	$P(R \cap C) = P(R) - P(R \cap C') = \frac{1}{6} - \frac{1}{6}$ or $\frac{1}{6} = \frac{1}{6}$ or $P(R) = P(R \cap C')$ or $P(R \cap C) = 0$	m1	States and uses correct identity oe Pl
	So they are mutually exclusive	A1	Gives correct conclusion.
		4	

7(b) 1,5 9 Correct calculation	
$\begin{bmatrix} -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,$	
368 A1 oe AWRT 0.701	
2	

Question 7 Tot	I 6	
----------------	-----	--

Q	Answer	Marks	Comments
8(a)	k + 5k + 9k + 14k = 1	M1	Forms correct equation PI
	$k = \frac{1}{29}$	Α1	Sight of $\frac{1}{29}$ oe
	$1 \times \frac{1}{29} + 5 \times \frac{5}{29} + 9 \times \frac{9}{29} + 14 \times \frac{14}{29}$	М1	Correct calculation for the mean for their k or correct expression in terms of k
	$Mean = \frac{303}{29}$	A1	AG Correct calculation must be seen before final answer
		4	

Q	Answer	Marks	Comments
8(b)	$E(B) = 1 - \frac{11}{16} = \frac{5}{16}$	B1	oe
	$\frac{303}{29} + \frac{5}{16} + E(C) = 11$	M1	Correct equation to find $E(C)$ or correct expression for $E(C)$ using their E(B)
	$E(C) = \frac{111}{464}$	A1	AWRT 0.239
		3	

Q	Answer	Marks	Comments
9	0.7g - T = 0.7a T - 0.4g = 0.4a	M1	PI oe Condone LHS of both multiplied by -1 or award for one correct equation.
	0.7g - 0.4g = 1.1a	M1	oe Correct equation with <i>T</i> eliminated PI by correct final answer.
	$a = 2.7 \left[\text{m s}^{-2} \right]$	A1	AWRT 2.7, accept $\frac{147}{55}$
	Our officer O Total	•	

Question 9 Total	3	
------------------	---	--

Q	Answer	Marks	Comments
10(a)	$\begin{bmatrix} \frac{dv}{dt} = a = \end{bmatrix} - t + 1.9 \begin{bmatrix} = 0 \end{bmatrix}$ or $p(t - 1.9)^2 + q$	М1	Correct differentiation. or Attempts to complete the square where <i>p</i> and <i>q</i> can take any value. PI by $\left[\frac{-b}{2a} = \right] \frac{-1.9}{-1}$ oe or $t = 1.9$
	t = 1.9 or $(-0.5)(t-1.9)^2 + q$	A1	oe
	$\begin{bmatrix} v_{\max} = \end{bmatrix} - 0.5(1.9)^2 + 1.9(1.9)$ or $(-0.5)(t - 1.9)^2 - ((-0.5) \times 1.9^2)$	М1	oe Substitutes their <i>t</i> into the correct velocity equation.
	1.805 [m s ⁻¹]	A1	Must be convincingly shown.
		4	

Q	Answer	Marks	Comments
10(b)	$\left[\int v dt = \right] -\frac{1}{6}t^3 + \frac{19}{20}t^2$	M1	Allow one error in a coefficient Pl
	$\left[\int_{0}^{2} v dt = \right] \left(-\frac{1}{6}(2)^{3} + \frac{19}{20}(2)^{2}\right) \left[-(0)\right]$	M1	Use of $t = 2$ with their integrated expression PI
	$\begin{bmatrix} 2\\ 0\\ 0 \end{bmatrix} v dt = \frac{37}{15}$	A1	PI by correct final answer. AWRT 2.47
	[Average speed =] $\frac{37}{30}$ [m s ⁻¹]	A1	AWRT 1.2
		4	

Q	Answer	Marks	Comments
10(c)	$\left[\frac{56}{3} - \left(\frac{37}{15}\right) = \right] 16.2 \text{or} \frac{81}{5}$	B1ft	Total distance travelled between t = 2 and $t = TPI by an equation that would lead tothe final answer.ft Their \left(\frac{37}{15}\right) from part (b)$
	$\begin{bmatrix} u = \\ -0.5(2)^2 + 1.9(2) \\ = 1.8 \end{bmatrix}$ $\begin{bmatrix} u = \\ 1.8 - k(2-2) \\ = 1.8 \end{bmatrix}$	М1	oe Correct attempt to find u by using $t = 2$ in either equation. PI by correct value of u
	$\begin{bmatrix} 16.2 = \end{bmatrix} \frac{(1.8+0)(T-2)}{2}$	М1	oe ft their 1.8 Correct expression in terms of <i>T</i> for the total distance travelled between t = 2 and $t = T$
	$16.2 = \frac{(1.8 + 0)(T - 2)}{2}$ or $18 = T - 2$ and $T = 20$	A1	oe Sets correct expression in terms of <i>T</i> for the total distance travelled between $t = 2$ and $t = T$ to equal 16.2 and AG
		4	

Q	Answer	Marks	Comments
11(a)	$\begin{bmatrix} I = \end{bmatrix} 2 \times 12 - 2v$	M1	Condone $2v - 2 \times 12$ PI By correct lower or upper bound in the final answer.
	$\begin{bmatrix} 0 < v \le 4 \end{bmatrix}$ 16 \le I < 24	A1	Condone 16 < <i>I</i> < 24
		2	

Q	Answer	Marks	Comments
11(b)	$2\times 12 - 2mq = 2\nu + 4m$	M1	Correct equation.
	v = 12 - 2m - mq or v = 12 - m(2 + q) or $0 < 12 - 2m - mq \le 4$	m1	Correctly rearranges to make v the subject of the equation. Could be seen in an inequality but if so must be unsimplified.
	$0 < 12 - m(2 + q) \le 4$	A1	AG Must be convincingly shown
		3	

Q	Answer	Marks	Comments
11(b) ALT	I = 2mq + 4m	M 1	Magnitude of impulse in terms and m and q
	$\begin{bmatrix} 16 \le I < 24 \end{bmatrix}$		
	$16 \leq 2mq + 4m < 24$	m1	Forms an inequality in <i>m</i> and <i>q</i> ft their 16 and 24 from part (a) as long as they are both positive.
	$\left[8 \le mq + 2m < 12\right]$		
	$\left[-4 \le m(2+q) - 12 < 0\right]$		
	$0 < 12 - m(2+q) \leq 4$	A1	AG Must be convincingly shown
		3	
	Question 11 Total	5	