

INTERNATIONAL QUALIFICATIONS

INTERNATIONAL A-LEVEL MATHEMATICS

MA03

(9660/MA03) Unit P2 Pure Mathematics

Mark scheme

January 2025

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from www.oxfordaqa.com

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2025 OxfordAQA International Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

	Μ	Mark is for method	
	m	Mark is dependent on one or more M marks and is for method	
	Α	Mark is dependent on M or m marks and is for accuracy	
	В	Mark is independent of M or m marks and is for method and accuracy	
E Mark is for explanation		Mark is for explanation	
\checkmark	or ft	Follow through from previous incorrect result	
	CAO	Correct answer only	
	CSO	Correct solution only	
	AWFW	Anything which falls within	
	AWRT	Anything which rounds to	
	ACF	Any correct form	
	AG	G Answer given	
SC Special case		Special case	
	oe	Or equivalent	
	A2, 1	2 or 1 (or 0) accuracy marks	
	<i>–x</i> EE	Deduct <i>x</i> marks for each error	
	NMS	No method shown	
	PI	Possibly implied	
	SCA	Substantially correct approach	
	sf	Significant figure(s)	
	dp	Decimal place(s)	
	ISW	Ignore subsequent working	

Q	Answer	Marks	Comments
1	$12 \times (0.5)^{3} + b \times (0.5)^{2} + c \times 0.5 + 6 = 10$ $12(-1.5)^{3} + b(-1.5)^{2} + c \times -1.5 + 6 = -24$	M1 A1	M1: One correct substitution or use of long divisionA1: Both substitutions correct
	b+2c = 10 $3b-2c = 14$	m1	Attempt to solve PI
	b = 6 c = 2	A1	Both values correct
			Ι
	Question 1 Total	4	

Q			Answer	Marks	Comments
2(a)		x	у	B1	All 5 correct <i>x</i> values (and no extra
		0.3	$5^{0.7} = 3.085169$		used) PI by 5 correct <i>y</i> values
		0.9	$5^{0.1} = 1.1746189$		At least 4 correct a values in exact
		1.5	$5^{-0.5} = 0.447213595$		form or decimals, rounded or
		2.1	$5^{-1.1} = 0.17026798$	1011	formula)
		2.7	$5^{-1.7} = 0.06482626$		PI by AWRT correct answer
		$\int_{0}^{3} 5^{(1-x)}$	$dx \approx]$		
	C	0.6×(5 ^{0.7}	$(+5^{0.1}+5^{-0.5}+5^{-1.1}+5^{-1.7})$	m1	Correct sub into formula with $h = 0.6$ oe and at least 4 correct <i>y</i> values either listed, with + signs, or totalled PI by AWRT correct answer
	=	2.965		A1	CAO , must see this value exactly and no errors made
				4	

Q	Answer	Marks	Comments
2(b)(i)	$f(x) = 5^{(1-x)} - 2x + 3$ f(1.6) = 0.18 f(1.7) = -0.075	М1	Or reverse Both values rounded or truncated to at least 1 sf
	Change of sign, $1.6 < \alpha < 1.7$	A1	Must have both statement and interval in words or symbols or comparing 2 sides: at 1.6, $5^{-0.6} > 2 \times 1.6 - 3$ at 1.7, $5^{-0.7} < 2 \times 1.7 - 3$ (M1) Conclusion as before (A1)
		2	

Q	Answer	Marks	Comments
2(b)(ii)	$x_2 = 1.690$	B1	
	$x_3 = 1.665$	B1	
		2	

|--|

Q	Answer	Marks	Comments
3(a)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = \left] -80x\left(3-4x^2\right)^9$	M1 A1	M1: $kx(3-4x^2)^9$ A1: ACF eg $10 \times (-8x)(3-4x^2)^9$ is M1 A1
		2	

Q	Answer	Marks	Comments
3(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \ln(4x) + x \times \frac{4}{4x} + 2 \times 3 \times \sec^2(3x)$	M1 M1 B1	Correct differentiation of $\ln 4x$ Correct use of product rule Correct differentiation of tan $3x$ (may be in terms of sin/cos)
	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = 1 + \ln(4x) + 6\mathrm{sec}^2(3x)$	A1	All correct ACF
		4	

Q	Answer	Marks	Comments
3(c)	$\begin{bmatrix} \frac{dy}{dx} = \\ (1-4x)^3 (3x-2) \times 6 - (3x-2)^2 (1-4x)^2 \times -12 \end{bmatrix}$	М1	$\frac{a(1-4x)^{3}(3x-2)-b(3x-2)^{2}(1-4x)^{2}}{(1-4x)^{6}}$ Maybe seen as 2 terms using product rule
	$\left(\left(1-4x\right)^3\right)^2$	A1	$a(3x-2)(1-4x)^{-3} - b(3x-2)^{2}(1-4x)^{-4}$ All correct
	$\left[= \frac{6 \times (1 - 4x)(3x - 2) + 12 \times (3x - 2)^{2}}{(1 - 4x)^{4}} \right]$		
	$=\frac{6\times(3x-2)((1-4x)+2\times(3x-2))}{(1-4x)^{4}}$	m1	$\frac{c(3x-2)((1-4x)+d(3x-2))}{(1-4x)^4}$ oe
	$=\frac{6(3x-2)(2x-3)}{(1-4x)^4}$	A1	
		4	

Question 3 Total	10	

Q	Answer	Marks	Comments
4(a)	$\overrightarrow{AB} = \begin{bmatrix} -4\\2\\5 \end{bmatrix}$	B1	
		1	

Q	Answer	Marks	Comments
4(b)	$\left \overrightarrow{AB} \right = \sqrt{\left(2 - \left(-2\right)\right)^2 + \left(-3 - \left(-1\right)\right)^2 + \left(-1 - 4\right)^2}$	M1	oe
	$\begin{vmatrix} \overrightarrow{AB} \end{vmatrix} = \sqrt{45}$	A1	Oe
		2	

Q	Answer	Marks	Comments
4(c)(i)	$\begin{bmatrix} 1\\-2\\3 \end{bmatrix} \cdot \begin{bmatrix} -4\\2\\5 \end{bmatrix} = 7$	M1	PI
	$\cos\theta = \frac{7}{\sqrt{14}\sqrt{45}}$	m1	Allow $\cos\theta = \frac{\pm 7}{\sqrt{14}\sqrt{45}}$
	$\theta = 73.8^{\circ}$	A1	AWRT 73.8°
		3	

Q	Answer	Marks	Comments
4(c)(ii)	$3 + \lambda = 2 - 4\mu$ $-15 + 3\lambda = -1 + 5\mu$	М1	Equating i components and equating k components
	$\lambda = 3, \qquad \mu = -1$	A1	Both correct
	$b-2\lambda = -3+2\mu$		
	<i>b</i> = 1	A1	
		3	
	Question 4 Total	9	

Q	Answer	Marks	Comments
5	$[Vol =] \pi \int_{0}^{\frac{\pi}{3}} (1 + \sin x)^2 dx$	B1	Correct volume statement
	$\left[\left(1+\sin x\right)^2=1+2\sin x+\sin^2 x\right]$		
	$[Vol = \pi] \int (1 + 2\sin x + 0.5 - 0.5\cos 2x) dx$	M1	Correct use of double angle
	$= \left[\pi\right] \left(1.5x - 2\cos x - 0.25\sin 2x\right)$	A1	Correct integration
	$= \left[\pi\right] \left(\left(1.5 \times \frac{\pi}{3} - 2 \times 0.5 - 0.25 \times \frac{\sqrt{3}}{2}\right) - \left(0 - 2 - 0\right) \right)$	m1	Correct subst of limits into their expression (must be in the correct form, $ax + b\cos x + c\sin 2x$)
	$=\pi\left(\frac{\pi}{2}+1-\frac{\sqrt{3}}{8}\right)$	A1	Oe
			1
	Question 5 Total	5	

Q	Answer	Marks	Comments
6(a)	$x = 4\sin\left(\frac{y}{3}\right)$	M1	Interchange x and y
	$\frac{x}{4} = \sin\left(\frac{y}{3}\right)$	М1	Attempt to rearrange
	$f^{-1}(x) = 3\sin^{-1}\left(\frac{x}{4}\right)$	A1	ACF
		3	

Q	Answer	Marks	Comments
6(b)(i)	$\left[\operatorname{gf}(x) = \right] \left 4\sin\left(\frac{x}{3}\right) \right $ or $4 \left \sin\left(\frac{x}{3}\right) \right $	B1	
		1	

Q	Answer	Marks	Comments
6(b)(ii)	$0 \le \mathrm{gf}(x) \le 4$	M1 A1	M1 : Identifying 0 and 4 A1 : Fully correct
		2	

Q	Answer	Marks	Comments
6(c)	Stretch + either I or II Parallel to <i>v</i> -axis I	M1	Transformations in either order
	SF 4 II	A1	
	Stretch + either I or II	M1	
	SF 3 II	A1	
		4	

Question 6 Total 10

Q	Answer	Marks	Comments
7(a)(i)	$[16\cos\theta - 30\sin\theta =]$		
	$R\cos heta\coslpha - R\sin heta\sinlpha$		
	<i>R</i> = 34	B1	
	$\alpha =$ 1.08	B1	AWRT 1.08
	$34\cos(heta+1.08)$	B1	AWRT 1.08
		3	

Q	Answer	Marks	Comments
7(a)(ii)	$[34\cos(y+1.08+2)=17]$	M1	PI
	$y + 3.08 = \cos^{-1}(0.5)$		
	<i>y</i> = –2.03, 2.16	A1 A1	AWRT –2.03, 2.16
		3	

Q	Answer	Marks	Comments
7(b)	$2\tan^2 X = 4 + \sec X$		X could be Y, $x - 15$ etc
	$2\left(\sec^2 X - 1\right) = 4 + \sec X$	M1	Correct use of trig identity (might use sin/cos)
	$(2\sec X+3)(\sec X-2)=0$		
	[sec <i>X</i> =]-1.5, 2	A1	oe
	X = -60°, 60°, 132°, 228°	A1	At least one correct PI by one correct final answer
	$x = -45^{\circ}, 75^{\circ}, 147^{\circ}, 243^{\circ}$	B2,1	B1 for three correct final answers
		5	

Question 7 Total	11	

Q	Answer	Marks	Comments
8	$\int \ln(2x+1) dx$		
	$u = \ln(2x+1), \frac{\mathrm{d}v}{\mathrm{d}x} = 1$	M1	Attempt at integration by parts
	$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{2}{2x+1}, v = x$	A1	All 4 terms correct
	$\int \ln(2x+1) dx = x \ln(2x+1) - \int x \frac{2}{2x+1} dx$	m1	Correct substitution into integration by parts formula
	$= x \ln(2x+1) - \int 1 - \frac{1}{2x+1} \mathrm{d}x$	B1	Dividing Pl
	$= x \ln(2x+1) - x + \frac{1}{2} \ln(2x+1)$	A1	All correct
	$\left[\int_{0}^{1} \ln(2x+1) dx = \right] \left(\ln 3 - 1 + \frac{1}{2}\ln 3\right) - \left(0 - 0 + \frac{1}{2}\ln 1\right)$	m1	Substitution limits into their expression (must be in correct form eg $(ax+b)\ln(2x+1)+cx$) or could have changed limits
	$=\frac{3}{2}\ln(3)-1$	A1	ACF

Question 8 Tota	7	
-----------------	---	--

Q	Answer	Marks	Comments
9	$\frac{\tan\beta + \tan\alpha}{\tan\alpha \tan\beta} = -2 \tan\alpha \tan\beta = -1,$		
	$ \tan \beta = \frac{-1}{\tan \alpha} $ or $ \tan \beta = 2 - \tan \alpha $	B1	Isolating $ aneta$ or $ anlpha$
	$\tan \alpha - \frac{1}{\tan \alpha} = 2$	M1	Equation in $ aneta$ or $ anlpha$
	$\tan^2 \alpha - 2\tan \alpha - 1 = 0$	m1	Quadratic equation in $\tan \alpha$ or $\tan \beta$
	$\tan \alpha = \frac{2 \pm \sqrt{8}}{2} = 1 \pm \sqrt{2}$	A1	oe final answer
	Question 9 Total	4	

Q	Answer	Marks	Comments
10(a)	$\int \left(\frac{1}{4}e^{2x} - 3e^{-2x}\right) dx = \frac{1}{8}e^{2x} + \frac{3}{2}e^{-2x} \left[+c\right]$	M1 A1	M1 : $ae^{2x} + be^{-2x}$ A1 : Fully correct
		2	

Q	Answer	Marks	Comments
10(b)(i)	$\frac{1}{4}e^{2x} - \frac{9}{4} = 3e^{-2x} - 2$	B1	
	$\left[e^{2x}-9=12e^{-2x}-8\right]$		
	$e^{2x} - 1 - 12e^{-2x} = 0$	M1	Set up quadratic equation, must =0
	$(e^{2x}-4)(e^{2x}+3)=0$		oe
	$e^{2x} \neq -3$	E1	Rejection of $e^{2x} = -3$
	$e^{2x} = 4$, $2x = \ln 4$ or $e^x = 2 \Rightarrow x = \ln 2$	A1	AG Must be convincingly shown
		4	

Q	Answer	Marks	Comments
10(b)(ii)	Area = $\left \int_{0.5 \ln 1.5}^{\ln 2} \left(\frac{1}{4} \left(e^{2x} - 9 \right) - \left(3e^{-2x} - 2 \right) \right) dx \right $	B1	Complete correct statement PI
	$= \left[\left[\frac{1}{8} e^{2x} - \frac{9}{4} x + \frac{3}{2} e^{-2x} + 2x \right]_{0.5 \ln 1.5}^{\ln 2} \right]$	M1 A1	Attempt at integration All 4 terms correct
	$= \left \left(\frac{1}{8} e^{2\ln 2} - \frac{1}{4} \ln 2 + \frac{3}{2} e^{-2\ln 2} \right) - \left(\frac{1}{8} e^{\ln 1.5} - \frac{1}{8} \ln 1.5 + \frac{3}{2} e^{-\ln 1.5} \right) \right $	m1	Correct substitution of correct limits into their expressions of the correct form
	$=\frac{5}{16}-\frac{1}{8}\ln\left(\frac{3}{8}\right)$	A1	$oe eg \frac{5}{16} + \frac{1}{8} ln\left(\frac{8}{3}\right)$
		5	

Question 10 T	al 11	
---------------	-------	--

Q	Answer	Marks	Comments
11(a)	$8e^{4x} + 12y\frac{dy}{dx} = e^x \times 3y^2\frac{dy}{dx} + e^xy^3$	M1 A1	M1 : Attempt at implicit differentiation A1 : Fully correct
	$\frac{dy}{dx} = \frac{e^{x}y^{3} - 8e^{4x}}{12y - 3e^{x}y^{2}}$	A1	ACF
		3	

Q	Answer	Marks	Comments
11(b)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}=0\right] \ \mathrm{e}^{a}b^{3}=8\mathrm{e}^{4a}$	M1	Equating numerator to 0 and rearrange
	$b^3 = 8e^{3a} \implies b = 2e^a$	A1	AG Must be convincingly shown
		2	

Q	Answer	Marks	Comments
11(c)	$2e^{4a} + 6(2e^{a})^{2} = e^{a}(2e^{a})^{3}$		
	or $\frac{1}{8}b^4 + 6b^2 = \frac{1}{2}b.b^3$	M1	Equation in one variable
	$2e^{4a} + 24e^{2a} = 8e^{4a}$	A1	$\frac{1}{8}b^4 + 6b^2 = \frac{1}{2}b^4$
	$4e^{2a} = e^{4a}$		
	$e^{2a} = 4$ $2a = \ln 4$		
	$a = \ln 2$	A1	oe
	<i>b</i> = 4	A1	CAO
		4	

Question 11 Tota	9	
------------------	---	--

Q	Answer	Marks	Comments
12(a)	$u^2 = x - 2 2u \frac{\mathrm{d}u}{\mathrm{d}x} = 1$	B1	$u = \sqrt{x-2}$ $du = \frac{1}{2u}dx$
	$\int x \sqrt{(x-2)} \mathrm{d}x = \int \left(u^2 + 2 \right) \times u \times 2u \mathrm{d}u$	M1	All in terms of u
	$=\int (2u^4+4u^2)\mathrm{d}u$	A1	
	$=\frac{2}{5}u^5+\frac{4}{3}u^3$	m1	Attempt to integrate $pu^4 + qu^2$
	$=\frac{2}{5}(x-2)^{\frac{5}{2}}+\frac{4}{3}(x-2)^{\frac{3}{2}} [+c]$	A1	ACF eg $\frac{2}{15}(x-2)^{\frac{3}{2}}(3x+4)$
		5	

Q	Answer	Marks	Comments
12(b)	$\int \frac{1}{\sqrt{2y}} dy = \int x \sqrt{(x-2)} dx$ $\int \frac{1}{\sqrt{2y}} dy = \int x \sqrt{(x-2)} dx$	M1 m1	Separate variables Attempt to integrate both sides All correct oe
	$\frac{1}{\sqrt{2}} \frac{2y}{\sqrt{2}} = \frac{1}{5} (x-2)^2 + \frac{1}{3} (x-2)^2 + c$	A1	$\frac{1}{\sqrt{2}} 2y^{0.5} = \frac{2}{3}x(x-2)^{\frac{3}{2}} - \frac{4}{15}(x-2)^{\frac{5}{2}} + c$ Attempt to find c (must have scored
	At (3, 2): $2 = \frac{2}{5} + \frac{4}{3} + c$	m1	M1m1)
	$c = \frac{4}{15}$	A1	
	$\frac{1}{\sqrt{2}}2y^{0.5} = \frac{2}{5}(x-2)^{\frac{5}{2}} + \frac{4}{3}(x-2)^{\frac{3}{2}} + \frac{4}{15}$		
	$\sqrt{2}y^{0.5} = \frac{1}{15} \left(6(x-2)^{\frac{5}{2}} + 20(x-2)^{\frac{3}{2}} + 4 \right)$	m1	Attempt to isolate y: $y = \frac{(their \text{ RHS})^2}{2}$ (must have scored M1m1m1) oe
	$y = \frac{2}{225} \left(3(x-2)^{\frac{5}{2}} + 10(x-2)^{\frac{3}{2}} + 2 \right)^2$	A1	ACF eg $\frac{2}{225} \left((x-2)^{\frac{3}{2}} (3x+4) + 2 \right)^2$ $\frac{2}{225} \left(5x(x-2)^{\frac{3}{2}} - 2(x-2)^{\frac{5}{2}} + 2 \right)^2$
		7	
			· · · · · · · · · · · · · · · · · · ·
	Question 12 Total	12	

Q	Answer	Marks	Comments
13(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{(t-1)2 - 2t}{(t-1)^2}$	M1	Either correct
	$\frac{\mathrm{d}y}{\mathrm{d}t} = 1 + \frac{1}{t^2}$	A1	Both correct ACF
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\left(1 + \frac{1}{t^2}\right)\left(t - 1\right)^2}{-2}$	m1	Correct ft
	When $t = 2$, $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{5}{8}$	A1	
	$x = 4, y = \frac{3}{2}$	B1	
	$y - \frac{3}{2} = -\frac{5}{8}(x - 4)$	М1	Correct equation
	8y - 12 = -5x + 20		
	5x + 8y = 32	A1	Allow integer multiples
		7	

Q	Answer	Marks	Comments
13(b)	$x = \frac{2t}{t-1}$		
	(t-1)x=2t		
	$t = \frac{x}{x-2}$	M1	Attempt to isolate t
	$y = t - \frac{1}{t}, \qquad y = \frac{x}{x - 2} - \frac{x - 2}{x}$	M1	Attempt to eliminate t
	$y = \left[\frac{x^2 - x^2 + 4x - 4}{x(x - 2)} = \frac{4x - 4}{x(x - 2)} = \right] \frac{4(x - 1)}{x(x - 2)}$	A1	
		3	

|--|

Q	Answer	Marks	Comments
14(a)	4x+4 = P(b-ax)+Q(a-bx)	B1	Correctly eliminating fractions
	$x = \frac{b}{a}, \frac{4b}{a} + 4 = Q\left(a - \frac{b^2}{a}\right)$	M1	Attempt at finding P or Q
	$Q(a^2-b^2)=4b+4a$		
	$Q = \frac{4b+4a}{\left(a^2-b^2\right)} \qquad \qquad \left[=\frac{4}{a-b}\right]$	A1	
	$x = \frac{a}{b}, \frac{4a}{b} + 4 = P\left(b - \frac{a^2}{b}\right)$		
	$P(b^2-a^2)=4b+4a$		
	$P = \frac{4b + 4a}{\left(b^2 - a^2\right)} \qquad \left[= \frac{4}{b - a} \right]$	A1	Both correct
		4	

Q	Answer	Marks	Comments
14(b)	$(a-bx)^{-1} = \frac{1}{a} \left(1 - \frac{b}{a}x\right)^{-1}$	M1	
	$=\frac{1}{a}\left(1+\frac{b}{a}x+\frac{b^2}{a^2}x^2\right)$	A1	oe
		2	

Q	Answer	Marks	Comments
14(c)(i)	$(b-ax)^{-1} = \frac{1}{b} \left(1 + \frac{a}{b}x + \frac{a^2}{b^2}x^2 \right)$	M1	Correct expansion oe
	$\frac{4}{b-a}\left(\frac{1}{a}\left(1+\frac{b}{a}x+\frac{b^2}{a^2}x^2\right)-\frac{1}{b}\left(1+\frac{a}{b}x+\frac{a^2}{b^2}x^2\right)\right)$		
	$=\frac{4}{b-a}\left(\left(\frac{1}{a}-\frac{1}{b}\right)+\left(\frac{b}{a^2}-\frac{a}{b^2}\right)x+\left(\frac{b^2}{a^3}-\frac{a^2}{b^3}\right)x^2\right)$	A1	ACF
		2	

Q	Answer	Marks	Comments
14(c)(ii)	$\frac{4}{a} \left(\frac{1}{a} + \frac{2}{a}x + \frac{4}{a}x^2 - \frac{1}{2a} - \frac{1}{4a}x - \frac{1}{8a}x^2 \right)$	M1	
	$=\frac{4}{a^2}\left(\frac{1}{2}+\frac{7}{4}x+\frac{31}{8}x^2\right)$		
	$=\frac{1}{a^2}\left(2+7x+\frac{31}{2}x^2\right)$	A1	
		2	

Question 14 Total	10	
-------------------	----	--