

INTERNATIONAL QUALIFICATIONS

INTERNATIONAL A-LEVEL MATHEMATICS

MA05

(9660/MA05) Unit M2 Mechanics

Mark scheme

January 2025

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from www.oxfordaqa.com

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2025 OxfordAQA International Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

I	Μ	Mark is for method		
I	m	Mark is dependent on one or more M marks and is for method		
	A	Mark is dependent on M or m marks and is for accuracy		
I	B Mark is independent of M or m marks and is for method and accurac			
I	E	Mark is for explanation		
√c	or ft	Follow through from previous incorrect result		
	CAO	Correct answer only		
	cso	Correct solution only		
1	AWFW	Anything which falls within		
1	AWRT	Anything which rounds to		
1	ACF	Any correct form		
	AG	Answer given		
ę	SC	Special case		
(oe	Or equivalent		
1	A2, 1	2 or 1 (or 0) accuracy marks		
-	– <i>x</i> EE	Deduct <i>x</i> marks for each error		
I	NMS	No method shown		
I	PI	Possibly implied		
9	SCA	Substantially correct approach		
\$	sf	Significant figure(s)		
(dp	Decimal place(s)		
I	ISW	Ignore subsequent working		

Q	Answer	Marks	Comments
1(a)	Maximum resultant force that can act on truck		
	P = Fv	M1	Use of or stating $P = Fv$ PI by 28 750 [N]
	$\frac{P}{v} - kv^{\frac{9}{4}} = ma$	A1	Forms a correct equation of motion
	$k = \frac{\frac{P}{v} - ma}{\frac{9}{v^4}}$		
	$k = \frac{\frac{345 \times 10^3}{12} - 18000 \times 1.5}{12^{\frac{9}{4}}}$		
	$=\frac{28750-27000}{12^{\frac{9}{4}}}$		
	$k = 6.529$ or $k = \frac{1750}{12^{\frac{9}{4}}}$		
	<i>k</i> = 6.53	A1	AG Must see value to at least 4 sf or <i>k</i> equal to a correct fraction before the printed result
		3	

Q	Answer	Marks	Comments
1(b)	Work done against the resistance force		
	$W = kv^{\frac{9}{4}} \times (vt)$ $W = 6.53 \times 18^{\frac{9}{4}} \times (18 \times 30)$	M1	
	<i>W</i> = 4357.89×540		
	$W = 2.4 \times 10^{6} [J]$	A1	Note: unrounded answer is $W = 2.353082432 \times 10^{6} [J]$ if unrounded value for k is used AWRT 2.4 × 10 ⁶ [J]
		2	

Q	Answer	Marks	Comments
1(c)	At maximum speed, resultant force is zero		
	$\frac{P}{v} = kv^{\frac{9}{4}}$		
	$\frac{P}{k} = v^{\frac{13}{4}}$		
	$v = \left(\frac{P}{k}\right)^{\frac{4}{13}}$		
	$v = \left(\frac{345 \times 10^3}{6.53}\right)^{\frac{4}{13}} \left[= \left(52833.07\right)^{\frac{4}{13}}\right]$	M1	
	$v = 28 \left[\text{m s}^{-1} \right]$	A1	Note: unrounded answer is 28.39304389 m s ⁻¹ if $k = 6.529$ used AWRT 28
		2	

Question 1 Total	7	

Q	Answer	Marks	Comments
2(a)	$82 = 100\cos\alpha$	M1	Use of equilibrium perpendicular to slope, with at least one side correct
	$\cos\alpha = \frac{82}{100}$		
	$\alpha = 35^{\circ}$	A1	CAO to nearest degree
		2	

Q	Answer	Marks	Comments
2(b)	$F = 100 \sin \alpha$	M1	Use of equilibrium parallel to slope, with at least one side correct ft their α
	F = 57 [N]	A1ft	ft their α AWRT 57
		2	

Q	Answer	Marks	Comments
2(c)	$F = \mu R$		
	$\mu = \frac{F}{R} = \frac{57}{82}$		
	$\mu = 0.70$	B1	oe AWRT 0.7 Condone one significant figure answer
		1	
	F		

Question 2 Total 5

Q	Answer	Marks	Comments
3(a)	Equilibrium of forces in vertical direction		
	R = mg		R = normal reaction
	$F = \mu m g$	B1	F = friction Allow $F \le \mu mg$ PI by 88.2 [N]
	Resultant force towards O		
	$m\omega^2 r = \mu mg$	M1	Sets their friction equal to the resultant force for circular motion
	$\omega = \sqrt{\frac{\mu g}{r}}$ or $\omega^2 = \frac{\mu g}{r}$		
	$\omega = \sqrt{\frac{0.45 \times 9.8}{0.3}}$ or $\omega^2 = \frac{0.45 \times 9.8}{0.3} [= 14.7]$	m1	Rearranges to make ω or ω^2 the subject and substitutes in
	$\omega = 3.834 \text{ or } \omega = \frac{7\sqrt{30}}{10}$		
	$\omega = 3.83 [3 sf]$	A1	AG Must see value to at least 4 sf or the exact value of $\frac{7\sqrt{30}}{10}$ before the printed result
		4	

Q	Answer	Marks	Comments
3(b)(i)	$\mathbf{r} = 0.3\cos(3t)\mathbf{i} + 0.3\sin(3t)\mathbf{j}$		
	$\mathbf{v} = -0.9\sin(3t)\mathbf{i} + 0.9\cos(3t)\mathbf{j}$	M1 A1	M1: At least one component correct A1: Both components correct
		2	

Q	Answer	Marks	Comments
3(b)(ii)	$\mathbf{v} = -0.9 \sin(3t)\mathbf{i} + 0.9 \cos(3t)\mathbf{j}$		
	$\mathbf{a} = -2.7\cos(3t)\mathbf{i} - 2.7\sin(3t)\mathbf{j}$	M1 A1	M1: At least one component correctft their velocity vectorA1: Both components correct
	$\mathbf{F} = -54\cos(3t)\mathbf{i} - 54\sin(3t)\mathbf{j}$	A1ft	ft their acceleration vector
		3	
			1
	Question 3 Total	9	

Q	Answer	Marks	Comments
4(a)	$x = (u \cos \alpha)t$	B1	Oe
	$y = \left(u\sin\alpha\right)t - \frac{1}{2}gt^2$	B1	
	$t = \frac{x}{u \cos \alpha}$		
	$y = (u\sin\alpha) \times \frac{x}{u\cos\alpha} - \frac{1}{2}g \times \left(\frac{x}{u\cos\alpha}\right)^2$	M1 A1	M1: Eliminates <i>t</i> in both terms with at least one term correct A1: All correct
	$(u\sin\alpha) \times \frac{x}{u\cos\alpha} = x\tan\alpha$		
	$-\frac{1}{2}g \times \left(\frac{x}{u\cos\alpha}\right)^2 = -\frac{gx^2}{2u^2} \times \frac{1}{\cos^2\alpha}$		
	$-\frac{gx^2}{2u^2} \times \frac{1}{\cos^2 \alpha} = -\frac{gx^2}{2u^2} \sec^2 \alpha$		
	$y = x \tan \alpha - \frac{gx^2}{2u^2} \sec^2 \alpha$		
	$\frac{g\sec^2\alpha}{2u^2}x^2 - x\tan\alpha + y = 0$	A1	AG Must be convincingly shown
		5	

Q	Answer	Marks	Comments
4(b)(i)	$\frac{9.8 \sec^2(60^\circ)}{2 \times 15^2} x^2 - x \tan(60^\circ) + 7 = 0$	М1	Forms a three-term quadratic equation by substituting in the values of g , u and α PI by two correct times, AWRT 1.9 and AWRT 0.75
	$\frac{98}{1125}x^2 - \sqrt{3}x + 7 = 0$		$0.087111x^2 - 1.732x + 7 = 0$
	x = 5.64 [m]	A1	AWRT 5.64
	x = 14.2 [m]	A1	AWRT 14.2
		3	

Q	Answer	Marks	Comments
4(b)(ii)	$T = \frac{x_1}{u\cos\alpha} - \frac{x_2}{u\cos\alpha}$		
	$T = \frac{14.2 - 5.64}{15\cos(60^{\circ})}$	M1	T = 1.89 0.752 Possible ft from 4(b)(i) PI by correct final answer
	T = 1.1 [seconds]	Α1	Unrounded answer is 1.1463… seconds AWRT 1.1 Condone 1.15 but not 1.2
		2	

Question 4 Tota	10	
-----------------	----	--

Q	Answer	Marks	Comments
5(a)	40 [newtons]	B1	Condone omission of units
	There is zero resultant force on the rod in the horizontal direction	E1	Any correct reason
		2	

Q	Answer	Marks	Comments
5(b)	Anticlockwise moments about X		
	$25gd\cos(65^\circ)+40\times 3$	B1	Correct two-term anticlockwise moment expression
	Clockwise moments about X		
	$40 \times 11 sin(65^{\circ}) + 0.4 \times 40 \times 11 cos(65^{\circ})$	B1	Correct two-term clockwise moment expression PI by 473.156… [N m]
	Principle of Moments		
	$25gd\cos(65^{\circ}) + 40 \times 3$ $= 40 \times 11\sin(65^{\circ}) + 0.4 \times 40 \times 11\cos(65^{\circ})$	М1	Sets their anticlockwise moments equal to their clockwise moments PI by correct final answer
	$d = \frac{11 \times (40 \sin(65^{\circ}) + 16 \cos(65^{\circ})) - 120}{25 \times 9.8 \times \cos(65^{\circ})}$		
	d = 3.4 [m]	A1	Note: u nrounded answer is 3.410770837 [m]
		4	

	Question 5 Total 6
--	--------------------

Q	Answer	Marks	Comments
6(a)	The mass per unit area of the lamina is constant throughout the entire lamina	E1	Any valid explanation
		1	

Q	Answer	Marks	Comments
6(b)(i)	$\overline{X} = \frac{2 \times -5 + 4 \times 5 \left[+7 \times 0 + 6 \times 0 \right]}{2 + 4 + 7 + 6}$	M1	Allow one error eg omission of lamina
	$\overline{X} = \frac{10}{19}$	A1	CAO in exact form
		2	

Q	Answer	Marks	Comments
6(b)(ii)	$\overline{Y} = \frac{7 \times d + 6 \times \frac{d}{3} \left[+2 \times 0 + 4 \times 0\right]}{2 + 4 + 7 + 6}$	M1	Allow one error eg omission of lamina
	$\overline{Y} = \frac{9d}{19}$	A1	CAO in exact form
		2	

Q	Answer	Marks	Comments
6(c)	$\tan(5^{\circ}) = \frac{\left(\frac{10}{19}\right)}{\left(\frac{9d}{19}\right)}$	M1 A1ft	M1 : Correct LHS or their \overline{X} divided by their \overline{Y} A1ft : Fully correct, ft their \overline{X} and their \overline{Y}
	$\tan(5^{\circ}) = \frac{10}{9d} \implies d = \frac{10}{9\tan(5^{\circ})}$		
	<i>d</i> = 13	A1	Note: unrounded answer is 12.70005811 AWRT 13 CSO
		3	

Question 6 Total	8	
------------------	---	--

Q	Answer	Marks	Comments
7(a)	Loss in GPE		
	$mg\Delta h = 3.2 \times 9.8 \times (2.5 \sin 40^\circ)$		
	$mg\Delta h = 50.3945486$ [J]	B1	Correct loss in GPE PI By correct working later on
	Conservation of Energy		
	$50.3945486 = \frac{1}{2}mu^2$	M1	Sets their loss in GPE equal to gain in KE
	$u = \sqrt{\frac{2 \times 50.3945486}{3.2}}$		
	<i>u</i> = 5.6	A1	Note: unrounded answer is 5.612182541 AWRT 5.6
		3	

Q	Answer	Marks	Comments
7(b)	Time to fall 6 metres vertically		
	$s = ut + \frac{1}{2}at^2$		
	$-6 = \left(-5.6\sin 40^\circ\right)t - \frac{1}{2} \times 9.8 \times t^2$	M1 A1ft	M1: Use of $s = ut + \frac{1}{2}at^2$ with at least two of <i>s</i> , <i>u</i> and <i>a</i> correct and consistent A1ft: Fully correct use of $s = ut + \frac{1}{2}at^2$ with their <i>u</i>
	t = 0.798[0806916 s]	A1	Ignore inclusion of –1.534[293222]
	x = ut		
	$x = (5.6\cos 40^{\circ}) \times (0.7980806916)$	M1	ft their <i>u</i> and their <i>t</i>
	<i>x</i> = 3.4	A1	CAO, AWRT 3.4
		5	

Q	Answer	Marks	Comments
7(c)	Vertical component of velocity upon colliding with the ground		
	$=\sqrt{u^2+2as}$		
	$=\sqrt{\left(-5.6\sin 40^{\circ} ight)^{2}+2 imes-9.8 imes-6}$		
	$= 11.4 [2863218 \text{ m s}^{-1}]$	B1	PI by AWRT 20.6 or AWRT 69.4
	Magnitude of velocity upon colliding with the ground		
	$v = \sqrt{11.42863218^2 + \left(5.6\cos 40^\circ\right)^2}$	M1	ft their vertical component of velocity and their value of u
	<i>v</i> = 12.2	A1	Note: unrounded value is 12.21051157
	$\tan \alpha = \frac{5.6\cos 40^{\circ}}{11.42863218} [= 0.3761763597]$		
	$\alpha = \tan^{-1} \left(\frac{5.6\cos 40^{\circ}}{11.42863218} \right)$	M1	ft their vertical component of velocity and their value of <i>u</i> Allow M1 for final angle of AWRT 69.4
	<i>α</i> = 20.6	A1	Note: unrounded value is 20.61511315
		5	
r			

Question 7 Total	13	

Q	Answer	Marks	Comments
8(a)	Magnitude of Y's momentum if X does not change direction during the collision		
	Conservation of Momentum		
	$19.2 + 7.5 = 2.4 + P_{\rm Y}$	M1	Either conservation of momentum equation correct
	$P_{\rm Y} = 24.3 \left[\rm kgms^{-1} \right]$	A1	AWRT 24
	Magnitude of Y's momentum if X does change direction during the collision		
	Conservation of Momentum		
	$19.2 + 7.5 = -2.4 + P_Y$		
	$P_{\rm Y} = 29.1 \left[\rm kgms^{-1} \right]$	A1	AWRT 29
		3	

Q	Answer	Marks	Comments
8(b)	KE of Sphere <i>X</i> before collision		
	$KE = \frac{1}{2}mv^2 = \frac{1}{2} \times 2 \times \left(\frac{19.2}{2}\right)^2$	M1	$KE = \frac{1}{2} \times 2 \times 9.6^2$
	KE = 92.16 [J]		
	KE of Sphere Y before collision		
	$KE = \frac{1}{2}mv^2 = \frac{1}{2} \times 5 \times \left(\frac{7.5}{5}\right)^2$	M1	$KE = \frac{1}{2} \times 2 \times 1.5^2$
	KE = 5.625 [J]		
	Sum of KE before collision		
	<i>E</i> = 92.16+5.625		
	<i>E</i> = 97.785	A1	AG Must be convincingly shown
		3	

Q	Answer	Marks	Comments
8(c)	KE of Sphere <i>X</i> after collision		
	$KE = \frac{1}{2}mv^2 = \frac{1}{2} \times 2 \times \left(\frac{2.4}{2}\right)^2$		
	KE = 1.44 [J]	B1	PI
	Possible speeds of Sphere Y after collision		
	$v_{Y} = 4.86 \left[\text{m s}^{-1} \right] \text{ or } v_{Y} = 5.82 \left[\text{m s}^{-1} \right]$	B1	At least one correct, PI
	KE of Sphere Y after collision (no change in direction)		
	$KE = \frac{1}{2}mv^{2} = \frac{1}{2} \times 5 \times (4.86)^{2}$		
	KE = 59.049 [J]	B1ft	ft their speed for Y PI by 60.489
	Sum of KE after collision		
	F = [1.44 + 59.049 =] 60.489		
	E - F = [97.785 - 60.489 =] 37.3	B1	Note: unrounded value is 37.296
	KE of Sphere Y after collision (a change in direction)		
	$KE = \frac{1}{2}mv^2 = \frac{1}{2} \times 5 \times (5.82)^2$		
	KE = 84.681	B1ft	ft their speed for <i>Y</i> PI by 86.121
	Sum of KE after collision		
	F = [1.44 + 84.681 =] 86.121 [J]		
	E - F = [97.785 - 86.121 =] 11.7	B1	Note: unrounded value is 11.664 [J]
		6	

Question 8 Tot	12	
----------------	----	--

Q	Answer	Marks	Comments
9	$\mathbf{F} = \left(36t^2 - 18t\right)\mathbf{i} + \left(6\cos t - 24\sin 2t\right)\mathbf{j}$		
	$+3e^{-\frac{t}{3}}k$		
	$\mathbf{a} = \left(12t^2 - 6t\right)\mathbf{i} + \left(2\cos t - 8\sin 2t\right)\mathbf{j}$	54	
	$+e^{-\frac{t}{3}}\mathbf{k}$	B1	Correct acceleration vector
	$\mathbf{v} = \left(4t^3 - 3t^2\right)\mathbf{i} + \left(2\sin t + 4\cos 2t\right)\mathbf{j}$ $-3e^{-\frac{t}{3}}\mathbf{k} + \mathbf{c}$	M1 A1ft	M1: At least one component correct from their acceleration vector A1ft: All components correct from their acceleration vector
			integration $f = 0$ into their velocity
	v(0) = 0i + 4j - 3k + c = 0	M1	vector and sets equal to zero vector, \mathbf{oe}
	$\mathbf{v} = \left(4t^3 - 3t^2\right)\mathbf{i} + \left(2\sin t + 4\cos 2t - 4\right)\mathbf{j}$		
	$+\left(3-3e^{-\frac{t}{3}}\right)\mathbf{k}$	A1	Correct velocity vector
	$\mathbf{r} = (t^4 - t^3)\mathbf{i} + (-2\cos t + 2\sin 2t - 4t)\mathbf{j}$		M1 : At least one component correct from their velocity vector
	$+\left(3t+9e^{-\frac{t}{3}}\right)\mathbf{k} + \mathbf{c}$	M1 A1ft	A1ft : All components correct from their velocity vector Condone omission of constant(s) of integration
	r(0) = 0i - 2j + 9k + c = 0		
	$\mathbf{r} = (t^4 - t^3)\mathbf{i} + (-2\cos t + 2\sin 2t - 4t + 2)\mathbf{j}$ $+ \left(3t + 9e^{-\frac{t}{3}} - 9\right)\mathbf{k}$	Α1	Correct position vector
	r(2) = 8i - 6.681j + 1.620k	M1	Substitutes $t = 2$ into their 3-dimensional position vector
	$ \mathbf{r}(2) = \sqrt{8^2 + (-6.681)^2 + (1.620)^2}$		
	$ \mathbf{r}(2) = 10.5 [m]$	A1	Note: unrounded answer is 10.54830625 [m]

		Question 9 Total	10	
--	--	------------------	----	--