

INTERNATIONAL QUALIFICATIONS

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS FM04

(9665/FM04) Unit FS2 Statistics

Mark scheme

January 2025

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from www.oxfordaqa.com

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2025 OxfordAQA International Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

Μ	Mark is for method				
m	Mark is dependent on one or more M marks and is for method				
Α	Mark is dependent on M or m marks and is for accuracy				
В	Mark is independent of M or m marks and is for method and accuracy				
E	Mark is for explanation				
$\sqrt{\mathbf{or}}$ ft	Follow through from previous incorrect result				
CAO	Correct answer only				
CSO	Correct solution only				
AWFW	Anything which falls within				
AWRT	Anything which rounds to				
ACF	Any correct form				
AG	Answer given				
SC	Special case				
oe	Or equivalent				
A2, 1	2 or 1 (or 0) accuracy marks				
<i>–x</i> EE	Deduct <i>x</i> marks for each error				
NMS	No method shown				
PI	Possibly implied				
SCA	Substantially correct approach				
sf	Significant figure(s)				
dp	Decimal place(s)				
ISW	Ignore subsequent working				

Q	Answer				Marks	Comments	
1(a)	Observed X Y Total A 84 76 160 B 56 120 176 C 80 84 164 Total 220 280 500					B1	Completed observed values table
						1	

Q	Answer	Marks	Comments
1(b)	 H₀: There is not an association between preferred brand of soft drink and preferred brand of biscuits H₁: There is an association between preferred brand of soft drink and preferred brand of biscuits 	B1	Both hypotheses, variables must be stated in at least the null hypothesis oe
	ExpectedXYA70.489.6B77.4498.56C72.1691.84	М1	At least two expected values correct
	$\sum \frac{\left(O-E\right)^2}{E} = \frac{\left(84-70.4\right)^2}{70.4} + \frac{\left(76-89.6\right)^2}{89.6} + \frac{\left(56-77.44\right)^2}{77.44} + \frac{\left(120-98.56\right)^2}{98.56} + \frac{\left(80-72.16\right)^2}{72.16} + \frac{\left(84-91.84\right)^2}{91.84}$	М1	Attempts to calculate test statistic PI
	= 16.81	A1	AWRT 16.8
	$\chi_2^2(0.995) = 10.597$	B1	Finds critical value AWRT 10.6 or <i>p</i> -value AWRT 0.0002
	16.81 > 10.597 Reject H ₀	A1ft	Correctly compares their χ^2 test statistic and their critical value or their <i>p</i> -value and 0.005 and makes a correct ft decision whether to reject the null hypothesis
	Sufficient evidence to suggest that there is an association between preferred brand of soft drink and preferred brand of biscuits	E1ft	Gives a conclusion in context, by referring to association between preferred soft drink and preferred biscuits or the researcher's claim, based on a comparison of their test statistic and their critical value oe Conclusion must not be definite (eg use of suggest/support)
		7	

|--|

Q	Answer	Marks	Comments
2(a)	$\frac{90.2 - 89.8}{\sqrt{\frac{\sigma_1^2 + \sigma_2^2}{12}}}$	М1	Applies test statistic formula either way round
	$\frac{90.2 - 89.8}{\sqrt{\frac{\sigma_1^2 + \sigma_2^2}{12}}} = \frac{4\sqrt{5}}{5}$	М1	Sets their test statistic equal to $\frac{4\sqrt{5}}{5}$
	$\sqrt{\frac{\sigma_1^2 + \sigma_2^2}{12}} = \frac{\sqrt{5}}{10}$		
	$\frac{\sigma_1^2 + \sigma_2^2}{12} = \frac{1}{20}$		
	$\sigma_1^2 + \sigma_2^2 = \frac{3}{5}$	A1	AG Must be convincingly shown
		3	

Q	Answer	Marks	Comments
2(b)	$\sigma_1^2 + \frac{1}{16}\sigma_1^2 = \frac{3}{5}$ or $16\sigma_2^2 + \sigma_2^2 = \frac{3}{5}$	M1	Forms a correct equation in σ_1^2 or σ_2^2 oe
	$\sigma_1^2 = \frac{48}{85}$	A1	Correct value of σ_1^2 AWRT 0.565
	$\sigma_2^2 = \frac{3}{85}$	A1	Correct value of σ_2^2 AWRT 0.035
		3	

Q	Answer	Marks	Comments
2(c)	z critical value = 1.6449	B1	Finds critical value AWRT 1.64 or 1.645 or finds <i>p</i> -value AWRT 0.037
	$\frac{4\sqrt{5}}{5} = 1.788 > 1.6449$	M1	Compares correct test statistic with their critical value or their <i>p</i> -value and 0.05
	Null hypothesis is rejected	A1ft	Correct conclusion from comparing the correct test statistic and their critical value oe
		3	

Question 2 Tota	9	
-----------------	---	--

Q	Answer	Marks	Comments
3(a)	Differences [in total sales between the two time periods] are normally distributed	E1	oe
		1	

Q	Answer	Marks	Comments
3(b)	$ \begin{aligned} &H_{0}:\boldsymbol{\mu}_{A}=\boldsymbol{\mu}_{B} \\ &H_{1}:\boldsymbol{\mu}_{A}>\boldsymbol{\mu}_{B} \end{aligned} $	B1	Both hypotheses oe
	Differences: 6, -2, 4, 2, 5, -3, 0, 5	М1	Calculates at least 5 correct differences, either way round
	$\overline{d} = \frac{17}{8} = 2.125$	A1	2.125 or -2.125 oe but must be consistent with their differences
	$s_d^2 = \frac{1}{7} \left(119 - \frac{17^2}{8} \right) = \frac{663}{56}$	A1	$\frac{663}{56}$ oe AWRT $s_d^2 = 11.8$ or $s_d = 3.44$
	$t = \frac{2.125 - 0}{\sqrt{\frac{663}{56}}}$	М1	Applies formula with their values
	<i>t</i> = 1.75	A1ft	AWRT 1.75 ft their values
	$t_7(95\%) = 1.895$	B1	Finds critical value AWRT 1.90 or finds <i>p</i> -value AWRT 0.062
	1.75 < 1.895 Do not reject H ₀	A1ft	Correctly compares their t test statistic and their critical value or their p-value and 0.05 and makes a correct ft decision whether to reject the null hypothesis
	Insufficient evidence to suggest that the total sales per member of staff have increased as a result of the layout change	E1	Gives a conclusion in context, by referring to total sales per member of staff or the company's claim, based on a comparison of the correct test statistic and correct critical value oe Condone definite conclusion
		9	

Question 3 Total	10	

Q	Answer				Marks	Comments
4(a)	n	Calculation	Width			Applies confidence interval formula with a value of <i>n</i> where $5 < n < 10$
	6	$2 \times 2.571 \times \sqrt{\frac{151.29}{6}}$	25.8		M1	Finds the width of a confidence interval for a value of <i>n</i> where $5 < n < 8$ or
	7	$2 \times 2.447 \times \sqrt{\frac{151.29}{7}}$	22.8			<i>n</i> = 9 PI , oe
	8	$2\times2.365\times\sqrt{\frac{151.29}{8}}$	20.6		_	Applies confidence interval formula
	9	$2\times2.306\times\sqrt{\frac{151.29}{9}}$	18.9		m1	with $n = 8$ PI , oe
	<i>n</i> = 8				A1	Correct working leading to $n = 8$
					3	

Q	Answer	Marks	Comments
4(b)	[55.7±0.5×20.6] (45.4,66.0)	B1	AWRT 45.4 and 66.0 Condone 66 for 66.0
		1	

Q	Answer	Marks	Comments
4(c)	40 is outside the confidence interval so the confidence interval does not support the claim	B1ft	Correct reason and conclusion ft their confidence interval
		1	

		Question 4 Total	5	
--	--	------------------	---	--

Q	Answer	Marks	Comments
5(a)	Critical values = 24.433 and 59.342	M1 A1	M1: At least one value A1: Both values
	$24.433 < \frac{40 \times 25.4}{k^2} < 59.342$	M1	Obtains correct inequality for their critical values or AWRT 4.14 and 6.45 seen
			Condone σ for k
	17.1< <i>k</i> ² < 41.6	A1	Obtains correct inequality for k^2 AWRT 17.1 and 41.6
			Obtains correct inequality for <i>k</i> AWRT 4.14 and 6.45
	4.14 < <i>k</i> < 6.45	A1ft	ft their values of k^2 provided an inequality of the form $a < k^2 < b$ is obtained
		5	

Q	Answer	Marks	Comments
5(b)	$ \begin{aligned} &H_{0}: \sigma_{M}^{2} = \sigma_{W}^{2} \\ &H_{1}: \sigma_{M}^{2} < \sigma_{W}^{2} \end{aligned} $	B1	Both hypotheses, oe
	$\frac{s_W^2}{s_M^2} = \frac{66.1}{25.4}$	М1	Applies test statistic formula, either way round Pl
	= 2.60	A1	AWRT 2.60 or 0.38 Allow 2.6 for 2.60
	$F_{10,40}(0.99) = 2.801$	B1	Finds correct critical value AWRT 2.80 or 0.36 Allow 2.8 for 2.80 or correct <i>p</i> -value, AWRT 0.016
	2.60 < 2.801 Do not reject H ₀	A1ft	Correctly compares their F test statistic and their critical value or their p-value and 0.01 and makes a correct ft decision whether to reject the null hypothesis
	Insufficient evidence to suggest that the population variance of the total marks on the written response section is different from the population variance of total marks on the multiple-choice section	E1	Gives a conclusion in context, by referring to the variances of marks on the written section and the multiple- choice section, based on a comparison of the correct test statistic and the correct critical value oe Condone definite conclusions
		6	
	1	Γ	1

Question 5 Tota	11	
-----------------	----	--

Q	Answer	Marks	Comments
6(a)	$E(X) = \sum_{i=1}^{n} E(T_i) = \frac{nm}{2}$	M1	Finds $E(X)$ in terms of <i>m</i> and <i>n</i>
	$\frac{nm}{2} \neq m$ therefore biased estimator	A1	Must see conclusion
		2	

Q	Answer	Marks	Comments
6(b)	$\frac{knm}{2} = m$	M1	Sets their $E(kX)$ equal to m
	$k = \frac{2}{n}$	A1	CAO
		2	

Q	Answer	Marks	Comments
6(c)	$\operatorname{Var}(kX) = \left(\frac{2}{n}\right)^2 \sum_{i=1}^n \operatorname{Var}(T_i)$	М1	Applies formula with k or their expression for k
	$\operatorname{Var}(kX) = \frac{4}{n^2} \left(\frac{nm^2}{12}\right) = \frac{m^2}{3n}$	A1ft	Correct expression for $Var(kX)$ for their k
	As $n \rightarrow \infty$, $Var(kX) \rightarrow 0$ so estimator is consistent	A1ft	ft their $Var(kX)$
		3	

Q	Answer	Marks	Comments
6(d)	0.5+1.2+1.5+3.2+7.1=13.5	M1	Correctly sums results
	$\frac{2}{5}$ × 13.5 = 5.4 minutes	A1ft	ft their <i>k</i> CSO
		2	

Question 6 Total	9	
------------------	---	--

Q	Answer	Marks	Comments
7(a)	$H_0: \mu_A = \mu_B$ $H_1: \mu_A \neq \mu_B$	B1	Both hypotheses, oe
	$z = \frac{18.3 - 17.9}{\sqrt{\frac{3.04^2}{478} + \frac{2.09^2}{437}}}$	М1	Applies formula Condone not squaring 3.04 and 2.09
	= 2.34	A1	AWRT 2.34
	z critical value = 2.3263	B1	Finds critical value AWRT 2.33 or finds <i>p</i> -value AWRT 0.0098
	2.34 > 2.3263 Reject H ₀	A1ft	Correctly compares their z or t test statistic and their critical value or their p-value and 0.01 and makes a correct ft decision whether to reject the null hypothesis
	Sufficient evidence to suggest that the population mean daily maximum heights of the two rivers are different	E1	Gives a conclusion in context, by referring to the mean daily maximum heights of the two rivers, based on a comparison of the correct test statistic and correct critical value oe Condone definite conclusion
		6	

Q	Answer	Marks	Comments
7(b)	The sample sizes are large [and so the central limit theorem applies]	E1	Oe
		1	

Q	Answer	Marks	Comments
7(c)(i)	$\pm 2.3263 \times \sqrt{\frac{3.04^2}{478} + \frac{2.09^2}{437}}$	М1	Attempts to calculate one of the limits with their critical value Condone attempt to calculate confidence interval limits Condone not squaring 3.04 and 2.09
	(-0.398, 0.398)	A1	Correct upper and lower limits AWRT ±0.398

P(Type II error) = P $\left(\frac{-0.398 - 0.2}{\sqrt{\frac{3.04^2}{478} + \frac{2.09^2}{437}}} < Z < \frac{0.398 - 0.2}{\sqrt{\frac{3.04^2}{478} + \frac{2.09^2}{437}}}\right)$	m1	Identifies correct probabilities corresponding to their limits PI
$P(Z \le 1.16) - (1 - P(Z \le -3.49))$ = 0.87698 - (1 - 0.99976)	A1	Correctly calculates one of the probabilities AWRT 0.877 or 1.000
= 0.877	A1	CSO , AWFW [0.876, 0.877]
	5	

Q	Answer	Marks	Comments
7(c)(ii)	1 - 0.877 = 0.123	B1ft	ft their Type II probability
		1	

Question 7 Tota	13	
-----------------	----	--

Q	Answer	Marks	Comments
8(a)(i)	$M'_{X}(t) = \frac{p e^{pt} (1 - qt^{2}) + 2qt e^{pt}}{(1 - qt^{2})^{2}}$	M1 A1	M1: $\frac{k_1 e^{pt} (1-qt^2) + k_2 t e^{pt}}{(1-qt^2)^2}$ oe A1: Fully correct oe
	$M'_{X}(0) = \frac{p(1) + 2q \times 0}{(1)^{2}} = 0 \Longrightarrow p = 0$	A1	AG Must be convincingly shown
		3	

Q	Answer	Marks	Comments
8(a)(ii)	$\mathbf{M}_{X}'(t) = \frac{2qt}{\left(1 - qt^{2}\right)^{2}}$	M1	Correctly simplifies $M'_X(t)$ PI
	$\mathbf{M}_{X}''(t) = \frac{2q(1-qt^{2})^{2} + 8q^{2}t^{2}(1-qt^{2})}{(1-qt^{2})^{4}}$	A1	Oe
	$\mathbf{M}_{X}''\left(0\right)=2q$	M1	Finds their ${ m M}_X'(0)$
	$\frac{1}{2} = 2q \Longrightarrow q = \frac{1}{4}$	A1	CSO
		4	

Q	Answer	Marks	Comments
8(b)(i)	$\mathbf{M}_{A}(t) = \int_{0}^{\infty} e^{ta} \times \lambda e^{-\lambda a} \mathrm{d}a = \int_{0}^{\infty} \lambda e^{-(\lambda - t)a} \mathrm{d}a$	M1	Applies mgf formula and simplifies Condone missing or incorrect limits
	$\mathbf{M}_{A}(t) = \left[\frac{-\lambda e^{-(\lambda - t)a}}{\lambda - t}\right]_{0}^{\infty}$	A1	Correctly integrates Condone missing or incorrect limits
	$\mathbf{M}_{A}(t) = \lim_{a \to \infty} \left(\frac{-\lambda e^{-(\lambda - t)a}}{\lambda - t} \right) + \frac{\lambda}{\lambda - t}$		
	$=0+rac{\lambda}{\lambda-t}$		
	$=\frac{\lambda}{\lambda-t}$	A1	AG Must be convincingly shown Condone not showing evidence of a limiting process
		3	

Q	Answer	Marks	Comments
8(b)(ii)	$\mathbf{M}_{-B}(t) = \mathbf{M}_{B}(-t) = \frac{\lambda}{\lambda + t}$	B1	Oe
		1	

Q	Answer	Marks	Comments
8(b)(iii)	$\mathbf{M}_{A-B}(t) = \mathbf{M}_{A}(t) \times \mathbf{M}_{-B}(t) = \frac{\lambda}{\lambda - t} \times \frac{\lambda}{\lambda + t}$	М1	Applies formula
	$M_{A-B}(t) = \frac{\lambda^{2}}{\lambda^{2} - t^{2}} = \frac{1}{1 - \frac{1}{\lambda^{2}}t^{2}}$	A1	Rearranges to the required form PI
	$\frac{1}{\lambda^2} = \frac{1}{4}$	M1	Sets their $\frac{1}{\lambda^2}$ equal to their q PI
	$\lambda = 2$	A1	CSO
		4	

|--|