

INTERNATIONAL QUALIFICATIONS

## INTERNATIONAL AS FURTHER MATHEMATICS FM01

(9665/FM01) Unit FP1 Pure Mathematics

Mark scheme

January 2025

Version: 1.0 Final



Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from www.oxfordaqa.com

## **Copyright information**

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2025 OxfordAQA International Examinations and its licensors. All rights reserved.

## Key to mark scheme abbreviations

|   | M Mark is for method |                                                                    |
|---|----------------------|--------------------------------------------------------------------|
|   | m                    | Mark is dependent on one or more M marks and is for method         |
|   | Α                    | Mark is dependent on M or m marks and is for accuracy              |
|   | В                    | Mark is independent of M or m marks and is for method and accuracy |
|   | E                    | Mark is for explanation                                            |
| V | `or ft               | Follow through from previous incorrect result                      |
|   | CAO                  | Correct answer only                                                |
|   | CSO                  | Correct solution only                                              |
|   | AWFW                 | Anything which falls within                                        |
|   | AWRT                 | Anything which rounds to                                           |
|   | ACF                  | Any correct form                                                   |
|   | AG                   | Answer given                                                       |
|   | SC                   | Special case                                                       |
|   | oe                   | Or equivalent                                                      |
|   | A2, 1                | 2 or 1 (or 0) accuracy marks                                       |
|   | – <i>x</i> EE        | Deduct <i>x</i> marks for each error                               |
|   | NMS                  | No method shown                                                    |
|   | PI                   | Possibly implied                                                   |
|   | SCA                  | Substantially correct approach                                     |
|   | sf                   | Significant figure(s)                                              |
|   | dp                   | Decimal place(s)                                                   |
|   | ISW                  | Ignore subsequent working                                          |
|   |                      |                                                                    |

| Q    | Answer | Marks | Comments |
|------|--------|-------|----------|
| 1(a) | 8+5i   | B1    | oe       |
|      |        | 1     |          |

| Q    | Answer                               | Marks | Comments                                                                                                                                                                                                         |
|------|--------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1(b) | -b = 8-5i + 8+5i<br>c = (8-5i)(8+5i) | М1    | Forms an equation in <i>b</i> (or <i>c</i> ) only<br>eg $-\frac{b}{2} = 8$<br>or<br>Writes the sum of the roots or the<br>product of the roots<br>May be seen in an expansion of<br>(z - (8 - 5i))(z - (8 + 5i)) |
|      | <i>b</i> = -16                       | A1    |                                                                                                                                                                                                                  |
|      | <i>c</i> = 89                        | A1    |                                                                                                                                                                                                                  |
|      |                                      | 3     |                                                                                                                                                                                                                  |

| Question 1 Tot | 4 |  |
|----------------|---|--|
|----------------|---|--|

| Q    | Answer                                                                       | Marks | Comments                                                             |
|------|------------------------------------------------------------------------------|-------|----------------------------------------------------------------------|
| 2(a) | When $x = a$ , $y = 5a^2 - 4a$                                               |       |                                                                      |
|      | When $x = a + h$ , $y = 5(a+h)^2 - 4(a+h)$                                   | M1    | Writes a correct expression for the<br>y-coordinate when $x = a + h$ |
|      | $y = 5a^2 + 10ah + 5h^2 - 4a - 4h$                                           |       |                                                                      |
|      | Gradient<br>= $\frac{5a^2 + 10ah + 5h^2 - 4a - 4h - (5a^2 - 4a)}{a + h - a}$ | M1    | Writes a correct expression for the gradient of the line             |
|      | $=\frac{10ah+5h^2-4h}{h}$                                                    |       |                                                                      |
|      | = 10a + 5h - 4                                                               | A1    | ое                                                                   |
|      |                                                                              | 3     |                                                                      |

| Q    | Answer                            | Marks | Comments                                                                                                            |
|------|-----------------------------------|-------|---------------------------------------------------------------------------------------------------------------------|
| 2(b) | Let $a=3$ and $h \rightarrow 0$   | М1    | Considers $h \rightarrow 0$<br>Condone $h = 0$ seen<br><b>PI</b> by a correctly evaluated part (a)<br>using $h = 0$ |
|      | Gradient = 10×3 + 5×0 − 4<br>= 26 | A1    | Must see <b>M1</b><br>Condone poor notation and poor<br>bracket use<br><b>A0</b> if $h = 0$ seen                    |
|      |                                   | 2     |                                                                                                                     |

| Question 2 Tot | 5 |  |
|----------------|---|--|
|----------------|---|--|

| Q | Answer                                                      | Marks | Comments                                                                                                         |
|---|-------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------|
| 3 | $\frac{5+i}{7-3i} = \frac{(5+i)(7+3i)}{(7-3i)(7+3i)}$       | M1    | Multiplies numerator and denominator by the conjugate of $7-3i$                                                  |
|   | $=\frac{35\!+\!15i\!+\!7i\!-\!3}{49\!+\!21i\!-\!21i\!+\!9}$ | M1    | Correct numerator <b>or</b> denominator<br>with an $i^2$ replaced with $-1$<br>May be simplified or unsimplified |
|   | $=\frac{32+22i}{58}$                                        |       |                                                                                                                  |
|   | $=\frac{16+11i}{29}$                                        | A1    | Must include at least one intermediate fraction after the first <b>M1</b>                                        |

| Question 3 Total | 3 |  |
|------------------|---|--|
|------------------|---|--|

| Q       | Answer        | Marks | Comments |
|---------|---------------|-------|----------|
| 4(a)(i) | $\frac{7}{3}$ | B1    | oe       |
|         |               | 1     |          |

| Q        | Answer        | Marks | Comments |
|----------|---------------|-------|----------|
| 4(a)(ii) | $\frac{c}{3}$ | B1    | oe       |
|          |               | 1     |          |

| Q       | Answer                                                                                                                      | Marks | Comments                                                                                                                                                                                     |
|---------|-----------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4(b)(i) | $\left(\alpha + \frac{5}{\beta}\right)\left(\beta + \frac{5}{\alpha}\right) = \alpha\beta + 5 + 5 + \frac{25}{\alpha\beta}$ | М1    | Correctly writes $\left(\alpha + \frac{5}{\beta}\right) \left(\beta + \frac{5}{\alpha}\right)$ in<br>terms of $\alpha\beta$<br><b>PI</b> by a correct substitution of their<br>$\alpha\beta$ |
|         | $\frac{c}{3}$ + 10 + $\frac{75}{c}$                                                                                         | A1    | <b>oe</b> expression with no fractions within the numerator or denominator                                                                                                                   |
|         |                                                                                                                             | 2     |                                                                                                                                                                                              |

| Q        | Answer                                                                                                                                                                                                                                     | Marks | Comments                                                                                                                                                                                         |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4(b)(ii) | $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta}$ $= \frac{\left(\alpha + \beta\right)^2 - 2\alpha\beta}{\alpha\beta}$ $= \frac{\left(\frac{7}{3}\right)^2 - 2\left(\frac{c}{3}\right)}{\frac{c}{3}}$ | М1    | Correctly writes $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ in terms of $\alpha + \beta$ and $\alpha\beta$<br><b>PI</b> by a correct substitution of their $\alpha + \beta$ and $\alpha\beta$ |
|          | $=\frac{49-6c}{3c}$                                                                                                                                                                                                                        | A1    | <b>oe</b> expression with no fractions within the numerator or denominator                                                                                                                       |
|          |                                                                                                                                                                                                                                            | 2     |                                                                                                                                                                                                  |

| Q         | Answer                                                                            | Marks | Comments                                                                                                                                                                |
|-----------|-----------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4(b)(iii) | $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$          | M1    | Correctly writes $\alpha^3 + \beta^3$ in terms of $\alpha + \beta$ and $\alpha\beta$<br><b>PI</b> by a correct substitution of their $\alpha + \beta$ and $\alpha\beta$ |
|           | $=\left(\frac{7}{3}\right)^3 - 3\left(\frac{c}{3}\right)\left(\frac{7}{3}\right)$ |       |                                                                                                                                                                         |
|           | $=\frac{343}{27}-\frac{7c}{3}$                                                    | A1    | <b>oe</b> expression                                                                                                                                                    |
|           |                                                                                   | 2     |                                                                                                                                                                         |

| Question 4 Tota | 8 |  |
|-----------------|---|--|
|-----------------|---|--|

| Q    | Answer                                                    | Marks | Comments                                                                                    |
|------|-----------------------------------------------------------|-------|---------------------------------------------------------------------------------------------|
| 5(a) | $\tan^{-1}(1) = \frac{\pi}{4}$                            | M1    | Correctly calculates $\tan^{-1}(1)$<br><b>PI</b> by a correct solution eg $-\frac{\pi}{12}$ |
|      | $x+rac{\pi}{3}=n\pi+rac{\pi}{4}$ where $n\in\mathbb{Z}$ | M1    | Correct non-trigonometric general equation in $x$<br>Condone $n$ (or eg $k$ ) not defined   |
|      | $[x=]n\pi-\frac{\pi}{12}$                                 | Α1    | <b>oe</b> eg $x = n\pi + \frac{11\pi}{12}$<br>Accept $\pm n\pi - \frac{\pi}{12}$            |
|      |                                                           | 3     |                                                                                             |

| Q    | Answer                                                                                                                          | Marks | Comments                                              |
|------|---------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------|
| 5(b) | $\left(-\frac{13\pi}{12}\right) + \left(-\frac{\pi}{12}\right) + \left(\frac{11\pi}{12}\right) + \left(\frac{23\pi}{12}\right)$ | M1    | Identifies three correct roots<br>May be unsimplified |
|      | $=\frac{10\pi}{12}\times2$                                                                                                      |       |                                                       |
|      | $=\frac{5\pi}{3}$                                                                                                               | A1    |                                                       |
|      |                                                                                                                                 | 2     |                                                       |

| Q    | Answer                             | Marks | Comments                                                           |
|------|------------------------------------|-------|--------------------------------------------------------------------|
| 5(c) | $\frac{10\pi}{12} \times m = 5\pi$ | M1    | Forms correct equation in <i>m</i> <b>ft</b> their part <b>(b)</b> |
|      | <i>m</i> = 6                       | A1ft  | <b>ft</b> their part <b>(b)</b> if <i>m</i> > 0                    |
|      |                                    | 2     |                                                                    |

| Question 5 Total | 7 |  |
|------------------|---|--|
|------------------|---|--|

| Q    | Answer                                                                       | Marks | Comments                                                                                                                                                                                                                                           |
|------|------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6(a) | $x^{2} + 2xyi - y^{2} = 45 - 28i$<br>Comparing imaginary parts:<br>2xy = -28 | М1    | Expands LHS and compares<br>imaginary parts.<br>Ignore sign errors.<br>Accept $xy = -14$ (or $xy + 14 = 0$ ) for<br>this mark.                                                                                                                     |
|      | $y = -\frac{14}{x}$                                                          | Α1    | <b>AG</b> Must be convincingly shown.<br>If $xy = -14$ (or $xy + 14 = 0$ ) is seen<br>instead of $2xy = -28$ (or $2xy + 28 = 0$ ),<br>then either $x^2 - y^2 = 45$ must also be<br>seen or a statement that imaginary<br>parts have been compared. |
|      |                                                                              | 2     |                                                                                                                                                                                                                                                    |

| Q    | Answer                                    | Marks | Comments |
|------|-------------------------------------------|-------|----------|
| 6(b) | Comparing real parts:<br>$x^2 - y^2 = 45$ |       |          |
|      | <i>k</i> = 45                             | B1    |          |
|      |                                           | 1     |          |

| Q    | Answer                                    | Marks | Comments                                                                                 |
|------|-------------------------------------------|-------|------------------------------------------------------------------------------------------|
| 6(c) | $x^2 - \left(-\frac{14}{x}\right)^2 = 45$ | M1    | Forms a correct equation in <i>x</i> (or <i>y</i> ) only <b>ft</b> their part <b>(b)</b> |
|      | $x^4 - 45x^2 - 196 = 0$                   |       |                                                                                          |
|      | $x^{4} - 45x^{2} - 196 = 0$ $x^{2} = 49$  | A1    | Correct value for x or y or $x^2$ or $y^2$<br><b>PI</b> by a correct root                |
|      | $y^2 = 4$                                 | М1    | Substitutes their value of x or $x^2$ to<br>find a value of y or $y^2$ (or vice versa)   |
|      | z = 7 - 2i, $z = -7 + 2i$                 | A1    | <b>oe</b><br>Accept $\pm 7\mp 2i$ but not $\pm 7\pm 2i$                                  |
|      |                                           | 4     |                                                                                          |

| Question 6 Total 7 |
|--------------------|
|--------------------|

| Q    | Answer                                                                                    | Marks | Comments                                                                                                                                                                                                                |
|------|-------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7(a) | $\log\left(1+\frac{2}{r}\right) = \log\left(\frac{r+2}{r}\right)$ $= \log(r+2) - \log(r)$ | B1    | Must include at least one intermediate stage<br>eg $\log\left(\frac{r+2}{r}\right)$ or $\log\left(\frac{Ar+B}{r}\right)$<br>Accept RHS shown equal to<br>$\log\left(A+\frac{B}{r}\right)$ with $A=1$ and $B=2$<br>given |
|      |                                                                                           | 1     |                                                                                                                                                                                                                         |

| Q    | Answer                                                                                                                                | Marks | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------|---------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7(b) | $\sum_{r=1}^{2n} \log\left(1 + \frac{2}{r}\right) = \sum_{r=1}^{2n} \left(\log(r+2) - \log(r)\right)$                                 | M1    | Writes at least 3 pairs of logs of the form $\log(r+2) - \log(r)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | $= \log(3) - \log(1) + \log(4) - \log(2) + \log(5) - \log(3) +$                                                                       | М1    | Includes at least one pair of cancelling<br>logs, eg $\log(3)$ and $-\log(3)$<br><b>PI</b> by all four terms of<br>$\log(2n+2) + \log(2n+1) - \log 2 - \log 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | $+ \log(2n) - \log(2n - 2) + \log(2n + 1) - \log(2n - 1) + \log(2n + 2) - \log(2n) = \log(2n + 2) + \log(2n + 1) - \log(2) - \log(1)$ | A1    | Correctly expresses the required sum in terms of no more than 4 logs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | $= \log\left(\frac{2n+2}{2}\right) + \log(2n+1)$ $= \log(n+1) + \log(2n+1)$                                                           | Α1    | CAO with M1M1 awarded<br>SC1<br>$\log\left(\frac{3}{1} \times \frac{4}{2} \times \frac{5}{3} \times \dots \times \frac{2n}{2n-2} \times \frac{2n+1}{2n-1} \times \frac{2n+2}{2n}\right)$ SC2<br>$\log\left(\frac{3}{1} \times \frac{4}{2} \times \frac{5}{3} \times \dots \times \frac{2n}{2n-2} \times \frac{2n+1}{2n-1} \times \frac{2n+2}{2n}\right)$ $= \log\left(\frac{2n+1}{1} \times \frac{2n+2}{2}\right)$ SC3<br>$\log\left(\frac{3}{1} \times \frac{4}{2} \times \frac{5}{3} \times \dots \times \frac{2n}{2n-2} \times \frac{2n+1}{2n-1} \times \frac{2n+2}{2n}\right)$ $= \log\left(\frac{2n+1}{1} \times \frac{2n+2}{2}\right)$ $= \log\left(\frac{2n+1}{1} \times \frac{2n+2}{2}\right)$ $= \log(2n+1) + \log(n+1)$ |
|      |                                                                                                                                       | 4     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Q    | Answer                                                                                        | Marks | Comments                                                                                                                                                         |
|------|-----------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7(c) | $\sum_{r=1}^{1200} \log\left(1 + \frac{2}{r}\right) = \log(600 + 1) + \log(2 \times 600 + 1)$ | M1    | Substitutes $n = 600$ into their part (b)<br>of the correct form<br>Allow $\log(Cn+D) + \log(En+F)$ for<br>non-integer <i>C</i> , <i>D</i> , <i>E</i> , <i>F</i> |
|      | $= \log(601 \times 1201)$                                                                     | A1    | ACF<br>PI by correct answer                                                                                                                                      |
|      | = log(721801)                                                                                 | A1    | May follow any correct expression in<br>part (b) eg $\log(2n+2) + \log\left(n+\frac{1}{2}\right)$                                                                |
|      |                                                                                               | 3     |                                                                                                                                                                  |

| Question 7 Total 8 |
|--------------------|
|--------------------|

| Q    | Answer                      | Marks | Comments                                                                         |
|------|-----------------------------|-------|----------------------------------------------------------------------------------|
| 8(a) | <i>y</i> = -1               | B1    | Correct horizontal asymptote                                                     |
|      | $4+3x-x^2=0$                | M1    | Attempts to solve denominator = 0<br><b>PI</b> by one correct vertical asymptote |
|      | $\Rightarrow x = -1, x = 4$ | A1    | Correct vertical asymptotes<br>Maximum 2 marks if any incorrect<br>asymptotes    |
|      |                             | 3     |                                                                                  |

| Q    | Answer                                               | Marks | Comments                                                                                                                           |
|------|------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------|
| 8(b) | $k = \frac{x^2}{4+3x-x^2}$                           |       |                                                                                                                                    |
|      | $k\left(4+3x-x^2\right)=x^2$                         |       |                                                                                                                                    |
|      |                                                      | M1    | Forms a quadratic equation of the<br>form $ax^2 + bx + c = 0$ with coefficients<br>in terms of k                                   |
|      | $(k+1)x^2 - 3kx - 4k = 0$                            | Α1    | Correct quadratic equation in $x$ with<br>coefficients in terms of $k$<br>Condone missing = 0<br><b>PI</b> by correct further work |
|      | At least one real root, so                           | М1    | Correct discriminant in terms of $k$ for<br>their quadratic equation<br><b>PI</b> by $(-3k)^2 \ge 4(k+1)(-4k)$                     |
|      | $(-3k)^2 - 4(k+1)(-4k) \ge 0$<br>$25k^2 + 16k \ge 0$ | М1    | Sets their discriminant ≥0<br>Accept >0<br><b>PI</b> by a correct range for their<br>quadratic equation                            |
|      | $k \le -\frac{16}{25}$ or $k \ge 0$                  | A1    | Accept < for $\leq$ and > for $\geq$<br><b>ACF</b> eg $k \in (-\infty, -0.64] \cup [0, \infty)$                                    |
|      |                                                      | 5     |                                                                                                                                    |

| Q    | Answer                                                                              | Marks | Comments                                                                                                         |
|------|-------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------|
| 8(c) | Let $k = -1$ , so $3x + 4 = 0$                                                      | M1    | Equates $\frac{x^2}{4+3x-x^2}$ with their <i>y</i> -value<br>from part (a)<br>PI by a correct ft <i>x</i> -value |
|      | $\Rightarrow x = -\frac{4}{3}$<br>Required point is $\left(-\frac{4}{3}, -1\right)$ | A1    | Accept $x = -\frac{4}{3}$ and $y = -1$ if unambiguous                                                            |
|      |                                                                                     | 2     |                                                                                                                  |

| Q    | Answer | Marks | Comments                                                                                                                   |
|------|--------|-------|----------------------------------------------------------------------------------------------------------------------------|
| 8(d) |        | B1    | Correct RHS and correctly approaching the asymptotes                                                                       |
|      |        | M1    | Maximum point to the left of the left-hand vertical asymptote, above the horizontal asymptote and below the <i>x</i> -axis |
|      |        | A1    | Correct LHS and correctly approaching the asymptotes                                                                       |
|      |        | 3     |                                                                                                                            |

| Question 8 Total | 13 |
|------------------|----|
|------------------|----|

| Q       | Answer                 | Marks | Comments                                                                                                                                                                                                                         |
|---------|------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9(a)(i) | $\operatorname{Im}(z)$ | М1    | Line from (or through) O into the 1st<br>quadrant                                                                                                                                                                                |
|         | 8i<br>O Re(z)          | A1    | Half-line from O into 1st quadrant at a steeper gradient than their other line<br>If no other line is drawn then it must<br>be at an angle of more than 45° from<br>the real axis<br>Condone an unruled line. Mark<br>intention. |
|         |                        | 2     |                                                                                                                                                                                                                                  |

| Q        | Answer        | Marks | Comments                                                                                                                                                                                                                                                                                              |
|----------|---------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9(a)(ii) | lm(z)         | M1    | Line from (or through) the positive<br>imaginary axis into the 1st quadrant at<br>a positive angle from the real axis                                                                                                                                                                                 |
|          | 8i<br>0 Re(z) | A1    | Half-line from 8i into 1st quadrant at a shallower gradient than their other line<br>If no other line is drawn then it must<br>be at an angle of less than 45° from<br>the real axis<br>Accept the imaginary intercept<br>labelled as 8. Condone (0,8)<br>Condone an unruled line. Mark<br>intention. |
|          |               | 2     |                                                                                                                                                                                                                                                                                                       |

| Q    | Answer                                                                                   | Marks | Comments                                                                     |
|------|------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------|
| 9(b) | $\frac{r}{\sin\left(\frac{2\pi}{3}\right)} = \frac{8}{\sin\left(\frac{\pi}{6}\right)}$   | M1    | Forms a correct equation in the modulus (or the real or imaginary part) only |
|      | $r = 8\sqrt{3}$                                                                          | A1    | Calculates the correct value of the modulus (or the real or imaginary part)  |
|      | Required complex number is                                                               |       |                                                                              |
|      | $8\sqrt{3}\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)$ |       |                                                                              |
|      | $= 4\sqrt{3} + 12i$                                                                      | A1    | <b>e</b> eg $\sqrt{48}$ + i12                                                |
|      |                                                                                          | 3     |                                                                              |

| Q       | Answer                              | Marks | Comments                                              |
|---------|-------------------------------------|-------|-------------------------------------------------------|
| 9(c)(i) | $8i - \left(4\sqrt{3} + 12i\right)$ | M1    | Full method for <i>R</i> or at least one correct part |
|         | $= -4\sqrt{3} - 4i$                 | A1    | <b>oe</b> eg $-\sqrt{48}$ - i4                        |
|         |                                     | 2     |                                                       |

| Q        | Answer                                                                                                          | Marks | Comments                                                                                  |
|----------|-----------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------|
| 9(c)(ii) | Area of triangle <i>OP</i> Q<br>= $\frac{1}{2} \times 8 \times 8\sqrt{3} \times \sin\left(\frac{\pi}{6}\right)$ | M1    | Full method for area of parallelogram <i>OPQR</i> or triangle <i>OPQ</i> (or <i>ORQ</i> ) |
|          | $=16\sqrt{3}$                                                                                                   |       |                                                                                           |
|          | Area of parallelogram <i>OPQR</i><br>= $32\sqrt{3}$                                                             | A1    | <b>oe</b> eg √3072                                                                        |
|          |                                                                                                                 | 2     |                                                                                           |

| Question 9 Total 11 |
|---------------------|
|---------------------|

| Q     | Answer                                           | Marks | Comments                                                                                                                               |
|-------|--------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------|
| 10(a) | $\sqrt{(x-0)^2 + (y-5)^2} = \pm 3(y+5)$          | М1    | Correct distance from <i>P</i> to (0,5)<br>or correct distance from <i>P</i> to $y = -5$<br><b>PI</b> by $x^2 + (y-5)^2 = 3^2 (y+5)^2$ |
|       |                                                  | M1    | Forms a correct equation in terms of $x$ and $y$                                                                                       |
|       | $x^{2} + y^{2} - 10y + 25 = 9(y^{2} + 10y + 25)$ | М1    | Correctly removes square root<br>PI by $x^{2} + (y-5)^{2} = 3^{2}(y+5)^{2}$                                                            |
|       | $x^2 = 8y^2 + 100y + 200$                        | A1    | <b>CAO</b> with M1M1M1 awarded<br>Condone $y5$ in the place of $\pm(y5)$                                                               |
|       |                                                  | 4     |                                                                                                                                        |

| $x^{2} = 8\left(y^{2} + \frac{25}{2}y\right) + 200$ $x^{2} = 8\left(\left(y + \frac{25}{4}\right)^{2} - \frac{625}{16}\right) + 200$ | М1       | Calculates $\frac{100}{2 \times 8}$<br>Accept as part of an expression<br>Accept $-\frac{100}{2 \times 8}$                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Translation vector is $\begin{bmatrix} 0\\ \frac{25}{4} \end{bmatrix}$                                                               | M1<br>A1 | Indicates the translation is parallel to<br>the <i>y</i> -axis<br>eg writes a vector of the form $\begin{bmatrix} 0\\ y \end{bmatrix}$ for<br>any non-zero <i>y</i><br><b>CAO</b> |
|                                                                                                                                      | 3        |                                                                                                                                                                                   |

| Q         | Answer                                                         | Marks | Comments                       |
|-----------|----------------------------------------------------------------|-------|--------------------------------|
| 10(b)(ii) | $x^2 = 8\left(y + \frac{25}{4}\right)^2 - \frac{625}{2} + 200$ |       |                                |
|           | $b = -\frac{225}{2}$                                           | B1ft  | <b>ft</b> Their <i>a</i> value |
|           |                                                                | 1     |                                |

| Q          | Answer                                                            | Marks | Comments                                                                                                                                                                                                                                     |
|------------|-------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10(b)(iii) | $\frac{225}{2} = 8y^2 - x^2$                                      |       |                                                                                                                                                                                                                                              |
|            | $1 = \frac{16y^2}{225} - \frac{2x^2}{225}$                        | М1    | Writes the equation of $H_2$ in the form<br>$py^2 - qx^2 = 1$ (or $px^2 - qy^2 = 1$ if<br>their <i>b</i> is positive) where <i>p</i> and <i>q</i> are<br>positive<br><b>PI</b> by a correct asymptote<br><b>ft</b> their part <b>(b)(ii)</b> |
|            | Asymptotes of $H_2$ are<br>$\frac{16y^2}{225} = \frac{2x^2}{225}$ | M1    | Writes at least one asymptote<br>equation for their $py^2 - qx^2 = 1$ (or<br>$px^2 - qy^2 = 1$ if their <i>b</i> is positive)<br>Award M1M1 for $x^2 = 8y^2$ oe                                                                              |
|            | $y = \pm \frac{x}{4}\sqrt{2}$                                     | A1    |                                                                                                                                                                                                                                              |
|            |                                                                   | 3     |                                                                                                                                                                                                                                              |

| Q         | Answer         | Marks | Comments                                                                                                                 |
|-----------|----------------|-------|--------------------------------------------------------------------------------------------------------------------------|
| 10(b)(iv) | V V            | B1ft  | Correct shape for their <i>b</i>                                                                                         |
|           | $\frac{15}{4}$ | B1ft  | Two asymptotes drawn through the origin with correct curve behaviour relative to the asymptotes <b>ft</b> Their <i>b</i> |
|           | 4              | B1    | Correct <i>y</i> -intercepts                                                                                             |
|           |                | 3     |                                                                                                                          |

| Question 10 Tot | 14 |  |
|-----------------|----|--|
|-----------------|----|--|