OXFORDAQA

INTERNATIONAL QUALIFICATIONS

Please write clearly in	ו block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature		
	I declare this is my own work.	Ĵ

INTERNATIONAL A-LEVEL MATHEMATICS

(9660/MA04) Unit S2 Statistics

Thursday 6 June 2024 07:00 GMT Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the OxfordAQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use			
Question	Mark		
1			
2			
3			
4			
5			
6			
7			
8			
TOTAL			

1	(c)	Find $E(2X_{1}-3X_{2})$	Do not write outside the box
		[2 marks]	
		Answer	
1	(d)	Find $Var(2X_1-3X_2)$	
		[2 marks]	
		Answer	7
		Turn over for the next question	
		Turn over ►	

3

2		The random variable X represents the number of accidents per day at a ski resort.
		Assume that X can be modelled by a Poisson distribution with parameter 15
2	(a)	Find the probability of exactly 8 accidents occurring on a given day.
		Give your answer to three significant figures. [2 marks]
		Answer
•		The mean number of conjugate new douje
2	(d)	The mean number of accidents per day is μ .
		The standard deviation of the number of accidents per day is 0
2	(b) (i)	State the value of μ and the value of σ [1 mark]
		μ = σ =

Do not write outside the box

2	(b) (ii)	Find $P(\mu - \sigma < X < \mu + \sigma)$	Do not write outside the box
		Give your answer to three significant figures. [4 marks]	
		Answer	
2	(c)	Give a reason why the Poisson distribution for the number of accidents per day may not be a good model for the number of people injured per day.	
		[1 mark]	
			8

Chen runs a company which uses biofuel to power machinery.

It is known that the biofuel used by Chen provides a mean energy of 25.1 megajoules per litre.

Chen puts an additive in the biofuel with the aim of increasing the mean energy per litre.

Chen tests 60 random samples.

3

Each sample consists of one litre of biofuel.

He measures the energy provided in megajoules. The results are summarised below.

$$\sum x = 1572$$
 and $\sum x^2 = 41850$

Test whether the mean amount of energy per litre has increased, using the 1% level of significance.

[10 marks]

		Do not write outside the
-		DOX
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		10
	Turn over for the next question	
	Turn over ►	

1	The continuous random variable X has probability density function	on $f(x)$	defined by
	$f(x) = \begin{cases} \frac{1}{k} x^2 & 1 \le x < 4 \end{cases}$		
	0 otherwise		
	where k is an integer.		
(a)	Show that $k = 21$		[3 marks]
(b)	Find $D(V > 2)$		
(0)	Find $P(X \ge 3)$		
	Give your answer in an exact form.		[2 marks]
	Answer		

4	(c) (i)	Find $E(5+2X^{-1})$	Do not write outside the box
		Give your answer in an exact form.	
		Answer	
		Question 4 continues on the next page	

4	(c) (ii)	Find $Var(5+2X^{-1})$	outside the box
		Give your answer in an exact form. [6 marks]	
		Answer	15

5	Random samples X_1 , X_2 and X_3 are taken from a population with unknown mean μ	Do not write outside the box
5 (a)	State, with a reason, whether $\frac{1}{2}X + \frac{1}{2}X + \frac{1}{2}X$	
	2 ¹¹ 3 ² 4 ³ is a statistic. [2 marks]	
5 (b)	State, with a reason, whether	
	$\frac{1}{3}\sum_{i=1}^{3}X_{i}^{2}-\mu^{2}$	
	is a statistic. [2 marks]	
		4

Do not write outside the box

6 (b)	It is given that $F(4) = -$	
• ()	13 <i>t</i>	
	Find the value of t	
	Give your answer in an exact form.	
	[1 ma	rkl
	Appwor	
	Allswei	

6

7		The mass, B grams, of each bolt produced by a machine can be modelled by	Do not write outside the box
		$B \sim N(0.8, 0.006^2)$	
7	(a)	Find the probability that a randomly selected bolt has a mass between 0.805 and 0.815 grams.	
		Give your answer to three significant figures. [3 marks]	
		Answer	
7	(b)	The mass, W grams, of each wingnut produced by a machine can be modelled by	
		$W \sim N(1, 0.005^2)$	
		A random sample of n wingnuts is taken.	
7	(b) (i)	In the case when $n = 25$, find $P(\overline{W} > 1.0015)$	
		Give your answer to three significant figures. [4 marks]	

		Answer	
7	(b) (ii)	In the case when $P(\overline{W} > 0.9992) > 0.95$ find the minimum possible value of	n
1	(b) (ll)	In the case when $\Gamma(r > 0.332) > 0.35$, and the minimum possible value of	п
			[4 marks]
		·	
		Answer	
		Question 7 continues on the next page	

Do not write outside the box

7	(c) (ii)	Find the value of <i>m</i> when $P(M < m) = 0.98$	Do not write outside the box
		Give your answer to four significant figures. [3 marks]	
			16
		Answer	
		Turn over for the next question	
		Turn over ►	

IB/G/Jun24/MA04

8		The number of meteors observed in a 15-minute period in a clear night sky is modelled by a Poisson distribution with mean 2
8	(a)	Find the probability of at least one meteor being observed in a 30-minute period.
		Give your answer to four significant figures. [3 marks]
		Answer

8 (b) A school astronomical society claims that the mean number of meteors observed in a 15-minute period in a clear night sky has changed from 2

A student from the school astronomical society carries out a hypothesis test at the 10% level of significance to determine whether there is evidence to support the school astronomical society's claim.

The student collects the data below over four distinct random intervals of 15 minutes, as shown below.

Interval	A	В	С	D
Number of meteors observed in a 15-minute period	2	6	0	4

The student then combines the results to consider the number of meteors observed for a one-hour period.

The first five stages of the student's hypothesis test are shown below.

There is an error in one of the stages.

	Statement
	$H_0: \lambda = 8$
Stage 1	$H_1: \lambda \neq 8$
	where λ is the mean number of meteors observed for a one-hour period
Stage 2	Under $H_0 X \sim Po(8)$
Oldge 2	where X is the number of meteors observed for the one-hour period
Stage 3	Use a two-tailed test at the 10% level of significance
.	$P(X \le 3) = 0.0424$ (< 0.05) (correct to four desired places)
Stage 4	$P(X \le 4) = 0.0996$ (> 0.05)
Otomo 5	$P(X \ge 13) = 0.0638 (> 0.05)$ (correct to four decimal places)
Stage 5	$P(X \ge 14) = 0.0342 (< 0.05)$
Stage 6	The critical region is {0, 1, 2, 3, 13, 14,} for a 10% level of significance

8 (b) (i) Identify the stage which has the error.

Write down a correct statement for this stage.

[2 marks]

Stage

Correct statement

Question 8 continues on the next page

Do not write outside the

box

 (b) (iii) For this hypothesis test find the probability of a Type I error. [1 mark] Answer (c) Let T be the time in minutes between successive meteors being seen. (c) (i) Find F(t), the cumulative distribution function of T [2 marks] 	8 (b) (ii)	State the student's conclusion for this hypothesis test.	[2 marks]
Answer 3 (c) Let <i>T</i> be the time in minutes between successive meteors being seen. 3 (c) (i) Find $F(t)$, the cumulative distribution function of <i>T</i> [2 marks]	8 (b) (iii)	For this hypothesis test find the probability of a Type I error.	[1 mark]
3 (c) Let <i>T</i> be the time in minutes between successive meteors being seen. 3 (c) (i) Find $F(t)$, the cumulative distribution function of <i>T</i> [2 marks]		Answer	
	3 (c) 3 (c) (i)	Let <i>T</i> be the time in minutes between successive meteors being seen. Find $F(t)$, the cumulative distribution function of <i>T</i>	[2 marks]
		$\mathbf{F}(t) = \begin{cases} & & \\ & & & \\ & & & $	
$\mathbf{F}(t) = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$			

			Do not write outside the
8	(c) (ii)	It is given that $P(T > a) = 0.6$	box
		Find the value of <i>a</i>	
		Give your answer to the nearest second.	
		[2 marks]	
		<i>a</i> =	
8	(c) (iii)	It is given that $P(T < b + 30 T > 30) = 3e^{-\frac{2}{15}b}$	
		Find the exact value of <i>b</i>	
		[2 marks]	
		<i>b</i> =	14
		END OF QUESTIONS	

IB/G/Jun24/MA04

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqa.com
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

