OXFORDAQA

INTERNATIONAL QUALIFICATIONS

Please write clearly in	i block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	
	I declare this is my own work.

INTERNATIONAL A-LEVEL MATHEMATICS

(9660/MA03) Unit P2 Pure Mathematics

Friday 31 May 2024 07:00 GMT

Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the OxfordAQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

		Answer all questions in the spaces provided.	Do not v outside box
1	(a)	Express $2\cos\theta + \sqrt{5}\sin\theta$ in the form $R\cos(\theta - \alpha)$ where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$	
		Give the value of α to the nearest degree. [3 marks]	
		Answer	
1	(b) (i)	Hence write down the minimum value of $2\cos\theta + \sqrt{5}\sin\theta$ [1 mark]	
		Answer	
1	(b) (ii)	Find the smallest possible positive value of θ at which the minimum value in part (b)(i) occurs.	
		Give your answer to the nearest degree. [1 mark]	
		Answer	5

2	(b) (iii)	Solve the equation $fg(x) = 4$	[3 marks]
		Answer	
2	(\mathbf{c})	The inverse of the function for in h	
2	(0)		
		Find $h(x)$	[3 marks]
			[0]

Do not write outside the box Describe a sequence of **two** geometrical transformations that maps the graph of $y = x^2$ onto the graph of $y = 4x^2 + 12x + 9$ 3 [5 marks] 5

4	(a)	It is given that $X = Ae^{-kt}$ where A and k are constants.	Do not write outside the box
		Show that $\frac{\mathrm{d}X}{\mathrm{d}t} = -kX$	
		[1 mark]	
4	(b)	The temperature X °C of water in a cup at time t minutes decreases at a rate that is directly proportional to the temperature of the water.	
		When $t = 0$ the temperature of the water is 90 °C	
		When $t = 5$ the temperature of the water is 80 °C	
		Use the differential equation in part (a) to find the value of t when the temperature of the water is 22.5 °C	
		Give your answer correct to one decimal place. [5 marks]	
		Answer	6

5	(a)	Use Simpson's rule with 4 strips to find an estimate for
		$\int_{-1}^{2} 3 - \tan^{-1}(2x - 0.5) dx$
		J_0
		Give your answer to three decimal places. [4 marks]
		Answer

Do not write
outside the
box

Do not write outside the box 6 (a) Show that $(\sin\theta - \csc\theta)(\cos\theta - \sec\theta) = 0.5\sin2\theta$ [3 marks]

IB/G/Jun24/MA03

6 (b) Hence solve the equation		Hence solve the equation
		$(\sin(1.5x+0.1)-\csc(1.5x+0.1))(\cos(1.5x+0.1)-\sec(1.5x+0.1))=0.4$
		Give your answers in radians to three decimal places in the interval $0 < x < \pi$ [3 marks]
		Answer
		Turn over for the next question

Г

Turn over ►

6

7 (a) Find
$$\int \frac{x-2}{2x^2-8x+3} dx$$
 [2 marks]

7 ((c)	Find $\int \sin^2 3x dx$	Do not write outside the box
		[3 marks]	
			8
		Answer	
		i urn over for the next question	
		Turn over ►	

8	(b) (ii)	Find the coordinates of <i>M</i>
		Give your answer in an exact form.
		Answer
8	(c)	Find the area of the finite region bounded by the curve $y = (5-4x)e^{-0.5x}$ and the line segment <i>AB</i>
		Give your answer in an exact form.
		Answer

9	(b)	Find the equation of the normal to the curve at <i>P</i>		Do not write outside the box
		Give your answer in the form $y = mx + c$	marksl	
		[*	markaj	
		Annuar		
		Answer		
9	(c)	The tangent to the curve at P intersects the y-axis at the point Q		
		The normal to the curve at P intersects the <i>y</i> -axis at the point R		
		Show that the area of the triangle <i>PQR</i> is $\frac{1}{4}a^2(\pi-2)^2$		
		4	marks]	
				10
		Turn over for the next question		
		Tur	n over ►	

10	A curve <i>C</i> has equation	
	$y = 4x - \left(x - y\right)^2$	
10 (a)	The line $x = 4$ intersects the curve <i>C</i> at the points <i>A</i> and <i>B</i>	
	Find the length of the line segment <i>AB</i>	[2 marks]
	Answer	

[4 marks]

Do not write outside the

box

Answer

Turn over for the next question

10 (b)

Turn over ►

6

Find the coordinates of the stationary point of C

Give your answer in an exact form.

11 (c)	Use your answers to parts (a) and (b) to show that	
	$\frac{75}{(5-x)(5+2x)^2} = D + Ex + Fx^2$	
	for small values of r where D , F and F are constants	
	To small values of λ , where D , E and F are constants.	[5 marks]
	Answer	

It is given that y = f(x) satisfies the differential equation $x\left(16-y^2\right) = 2\left(x^2+5\right)\frac{\mathrm{d}y}{\mathrm{d}x}$ Find the solution of the differential equation given that y = 1 when x = 0Give your answer in the form y = f(x)[9 marks]

12

Do not write outside the

box

Do not writ
outside th
_
—
-
_
—
-
_
-
_
_ _ 9

13 <i>(</i> h) (ii)	Show that the chartest distance from the point $(2, 2, 6)$ to the line l is $\pi \sqrt{\pi}$		
13 (b) (ii)	where q is a constant.	,	
		[5 marks]	
		 Г	
			9

14 (a) (i) It is given that
$$\cot x = \frac{\cos x}{\sin x}$$

Use the quotient rule to show that

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$
[2 marks]

14 (a) (ii) Use the substitution $u = 1 + \cot x$ to find the value of $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{\csc^2 x}{(1 + \cot x)^2} dx$
Give your answer in the form $p + q\sqrt{3}$ where p and q are rational numbers.
[5 marks]

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

aterial are published in a separate booklet. This booklet bad from www.oxfordaqa.com cases, efforts to contact copyright-holders may have		
icknowledgements. If you have any queries please		
2 4 6 X M A 0 3		
IB/G/Jun24/MA	\ 03	

Question	Additional page, if required.	
number	write the question numbers in the left-hand margin.	
	Copyright information	
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqa.com	
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.	
	Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.	

