OXFORDAQA

INTERNATIONAL QUALIFICATIONS

Please write clearly in	n block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.
	r declare uns is my own work.

INTERNATIONAL AS **MATHEMATICS**

(9660/MA01) Unit P1 Pure Mathematics

Wednesday 15 May 2024 07:00 GMT Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the OxfordAQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

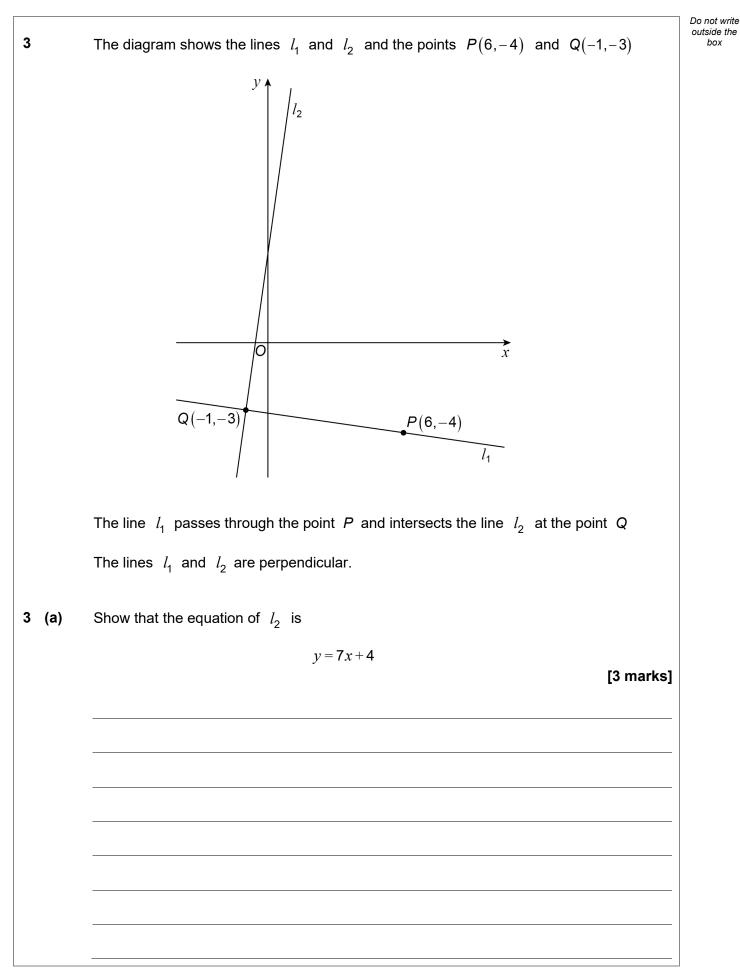
- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
TOTAL		

1	(a)					
		The <i>n</i> th term of a seque	nce is x_n wher	e		
			$x_{n+1} = x_n$	_n +5		
		The fourth term $x_4 = 30$)			
1	(a) (i)	Find the value of x_1				
		Circle your answer.				[1 mark]
		5	10	15	20	
1	(a) (ii)	Find the value of n for	which $x_n = 60$			
	.,.,	Circle your answer.	n			[d model
						[1 mark]
		8	9	10	11	

		Do not write
1 (b)	Two sequences are generated by the formulae	outside the box
	$u_{n+1} = pu_n + 12$ and $t_{n+1} = 2pt_n + 3$	
	where p is a constant.	
	The sequences have the same non-zero limit L as $n \rightarrow \infty$	
	Find the value of L and the value of p	
	[4 marks]	
	L = p =	6

2	(a)	Given that $x \neq 0$ and $y \neq 0$ simplify
		$\frac{\left(3x^{7}y^{\frac{2}{3}}\right)^{6}}{\sqrt{9x^{4}y^{\frac{3}{2}}}}$
		$\frac{\left(\begin{array}{c}\right)}{\left(2-4-\frac{3}{2}\right)}$
		$\sqrt{9x^4y^2}$
		Give your answer in the form
		ax^by^c
		where a, b and c are constants.
		[3 marks]
		Answer



Do not write outside the box

2 (b) Given that
$$w > 0$$
 show that

$$\frac{(5+4\sqrt{w})^2 - (5-8\sqrt{w})^2}{8\sqrt{w}}$$
can be written in the form $d + e\sqrt{w}$, where d and e are integers.
[3 marks]

3	(b)	The point <i>R</i> lies on l_2	Do not write outside the box
		The <i>x</i> -coordinate of <i>R</i> is <i>a</i> where $a > 0$	
		The distance QR is $6\sqrt{10a}$	
2	(b) (i)	Show that	
3	(b) (l)	$5a^2 - 26a + 5 = 0$	
		3u - 20u + 3 - 0 [3 marks]	
•		Lines find the coordinates of the two possible positions of \mathbf{D}	
3	(11) (0)	Hence find the coordinates of the two possible positions of <i>R</i> [3 marks]	
		Answer and	9

The third, fourth and sixth terms of a finite arithmetic series are 4 $u_3 = p - 4$, $u_4 = 2p - 18$ and $u_6 = 5p - 67$ where p is a constant. Show that p = 214 (a) [2 marks] The last term of the series is $u_m = 990$ 4 (b) Find the value of m[4 marks] *m* = _____

Do not write
outside the
box

4	(c)	The sum of all the even terms of the series is S	Do not write outside the box
		Find the value of S [3 marks]	
			[]
			9
		Turn over for the next question	
		Turn over ►	

F		The function of its sizes but	Do not write outside the
5		The function f is given by	box
		$f(x) = 3x^2 + (4k+5)x + 10k + a$	
		where k and a are constants.	
		When $f(x)$ is divided by $(x+5)$ the remainder is $59-17k$	
5	(a)	Use the Remainder Theorem to show that	
		a = 9 - 7k	
		[2 marks]	
5	(b)	The curve <i>C</i> has equation $y = f(x)$	
		The line <i>L</i> has gradient 7 and intersects the <i>y</i> -axis at the point $(0, -3k)$	
		The curve C and the line L intersect at two distinct points.	
		Find the possible values of k	
		[8 marks]	

	Do not write outside the
	box
	10
Answer	

6		The curve <i>C</i> has equation	Do not write outside the box
		$y = 6x^2 + p$	
		where p is a constant.	
6	(a)	Write down the coordinates of the vertex of C [1 mark]	
		Answer	
6	(b)	The curve <i>D</i> has equation	
		$y = 6x^2 - 48x + 103$	
		By completing the square describe the single transformation which maps <i>C</i> onto <i>D</i> [5 marks]	
			6
			نـــــا

		Do not write outside the
8	The curve <i>C</i> has equation $y = f(x)$ where	box
	$f(x) = \frac{k - 6\sqrt{x} + 5x}{\sqrt{x}} + \frac{9}{2}$	
	where $x > 0$ and k is a constant.	
	The point <i>P</i> has <i>x</i> -coordinate $\frac{1}{4}$ and lies on <i>C</i>	
8 (a)	Show that the gradient of C at P is given by	
	5 - 4k	
	[4 marks]	

8	(b)	The tangent to <i>C</i> at <i>P</i> is parallel to the line with equation $y = -43x+9$	
8	(b) (i)	Show that $k = 12$ [1 mark	c]
			-
			_
8	(b) (ii)	Find the equation of the tangent to C at P	
		Give your answer in the form $ax + by = c$ where <i>a</i> , <i>b</i> and <i>c</i> are integers. [3 marks]	\$]
			-
			_
			-
			_
			_
			_
			_
		Answer	-
		Question 8 continues on the next page	

8	(c)	The surve C has one stationary point at O	Do not write outside the box
0	(c)	The curve C has one stationary point at Q	DOX
		The <i>x</i> -coordinate of Q is $\frac{12}{5}$	
		Use the second derivative to determine whether Q is a maximum point or a minimum	
		point. [3 marks]	
8	(d)	State the values of x for which f is an increasing function. [1 mark]	
		Answer	12
			1

9 A student is testing the accuracy of the trapezium rule by using it to estimate the value of the integral *I* where

$$I = \int_{0.5}^{1.5} \left(\frac{1}{4x^2} + \frac{x^3}{6} \right) \, \mathrm{d}x$$

9 (a) (i) Complete the table giving your values to four decimal places.

[2 marks]

Do not write outside the

box

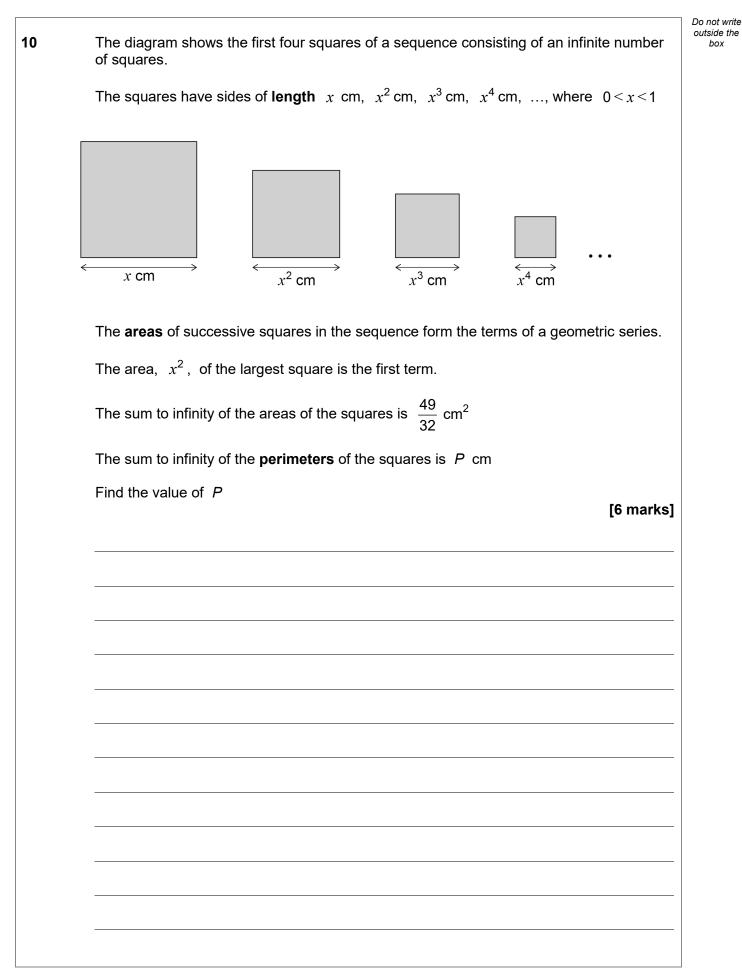
x	0.5	0.75	1	1.25	1.5
$\frac{1}{4x^2} + \frac{x^3}{6}$		0.5148	0.4167		

9 (a) (ii) Hence use the trapezium rule with five ordinates (four strips) to find an estimate for *I* Give your answer to three decimal places.

[3 marks]

Answer

Question 9 continues on the next page


9 (b) (i) Find
$$\int \left(\frac{1}{4x^2} + \frac{x^3}{6}\right) dx$$
 [2 marks]

			Do not write
9	(c)	The student claims that the answer obtained in part (a)(ii) using the trapezium rule is within 5% of the exact value.	outside the box
		Use your answers to parts (a)(ii) and (b)(ii) to determine whether the student is correct. [2 marks]	
9	(d)	Explain how to obtain an improved estimate for I using the trapezium rule. [1 mark]	
			12
		Turn over for the next question	

Do not write outside the box 6 P = _____ END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Do not write outside the box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.		
	Copyright information		
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqa.com		
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.		
	Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.		

