OXFORDAQA

INTERNATIONAL QUALIFICATIONS

Please write clearly in	ו block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature		
	I declare this is my own work.	

INTERNATIONAL A-LEVEL MATHEMATICS

(9660/MA05) Unit M2 Mechanics

Friday 14 June 2024 07:00 GMT

Time allowed: 1 hour 30 minutes

Materials

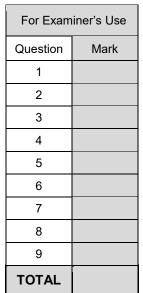
- For this paper you must have the OxfordAQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- The **final** answer to questions requiring the use of calculators should be given to two significant figures, unless stated otherwise.
- Unless stated otherwise, the acceleration due to gravity, g, should be taken as 9.8 m s⁻²

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.


Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

IB/G/Jun24/G4002/V5

• Show all necessary working; otherwise marks may be lost.

	Answer all questions in the spaces provided.
1	A motorcycle is moving on a straight, horizontal road.
	The mass of the motorcycle is 280 kg
	When the motorcycle's speed is $v \text{ m s}^{-1}$, the magnitude of the total resistance force
	experienced by the motorcycle is $0.91v^{\frac{5}{3}}$ newtons.
	Assume that the motorcycle can be modelled as a particle.
1 (a)	Draw a diagram to show all of the forces acting on the motorcycle when it is moving at a constant speed.
	Write down the names of the forces on your diagram. [2 marks]
1 (b)	When the motorcycle's speed is 15 m s^{-1} , its acceleration is 3.5 m s^{-2}
	Find the magnitude of the driving force provided by the motorcycle's engine.
	[3 marks]
	Angular
	Answer

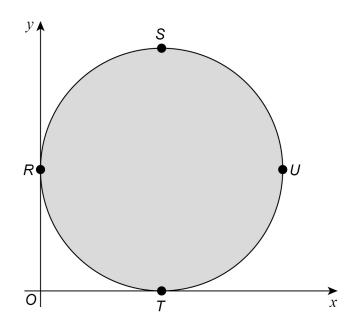
	Do not write
The maximum power output of the motorcycle's engine is 50 kW	outside the box
Find the maximum possible speed of the motorcycle along this straight, horizontal road. [2 marks]	
Answer	
State, with a reason, how your answer to part (c) would change if the motorcycle was moving up a slope of constant gradient.	
[2 marks]	
	9

Turn over for the next question

1 (c)

1 (d)

Turn over ►



box

2	(b) (ii)	Find the magnitude of F ₂ when $t = \frac{\pi}{4}$	Do not write outside the box
		[3 marks]	
		Answer	8
		Turn over for the next question	
		Turn over ►	

The system is shown in the diagram below.

The table below shows the mass of each particle and the coordinates of the points at which they are fixed to the lamina.

Particle	Mass (kg)	Coordinates (metres)
R	2	(0, 3)
S	3	(3, 6)
Т	7	(3, 0)
U	11	(6, 3)

The mass of the uniform circular lamina is 5 kg

The diameter of the uniform circular lamina is 6 metres.

3 (a) State, with a reason, the coordinates of the centre of mass of the **uniform circular lamina**.

[2 marks]

Do not write outside the

box

3	(b)	Find the coordinates of the centre of mass of the system .
		Give your answer in an exact form. [4 marks]
		Answer
3	(c)	The system is freely suspended from the point where particle S is fixed to the lamina, and it hangs in equilibrium.
		Find the angle between the vertical and the line connecting the points where particles S and T are fixed to the lamina.
		Give your answer to the nearest degree. [3 marks]
		Answer

Do not write outside the box

4	A person shoots an arrow of mass 80 grams from	a bow towards a target.
	The arrow leaves the bow with a velocity of 45 m s the horizontal.	5 ⁻¹ at an angle of 10° above
	When the arrow leaves the bow, the horizontal disp the arrow is 70 metres.	placement of the target from the tip of
	When the arrow leaves the bow, its tip is 1.6 metre	es above the horizontal ground.
	The bottom of the target is 0.8 metres above the h	norizontal ground.
	The top of the target is 1.8 metres above the horiz	zontal ground.
	The plane of the target is perpendicular to the horiz	contal ground.
	The arrow moves in a vertical plane that is perpend centre of the target, as shown in the diagram.	licular to the target and contains the
	45 m s ^{−1}	Not drawn to scale
	431113 ·	Target
	1.6 m	1.8 m
		0.8 m
i	<70 m	
	During its flight, assume that the arrow does not ex	perience any force except its weight.
4 (a) (i)	Show that the kinetic energy of the arrow immediat	ely after it leaves the bow is 81 J [1 mark]
4 (a) (ii)	Find the kinetic energy of the arrow when the arrow the ground.	v is at its maximum height above
	Give your answer to three significant figures.	IO ve ovice)
		[2 marks]
	Answer	

4	(b)	Use an energy method with your answers to part (a) to find the maximum height of the arrow above the ground. [3 marks]	Do not write outside the box
		Answer	
4	(c) (i)	Find the time taken for the arrow to travel 70 metres in the horizontal direction. Give your answer to three significant figures. [1 mark]	
		Answer	
4	(c) (ii)	Hence determine whether the arrow hits the target. [4 marks]	
		Answer	11

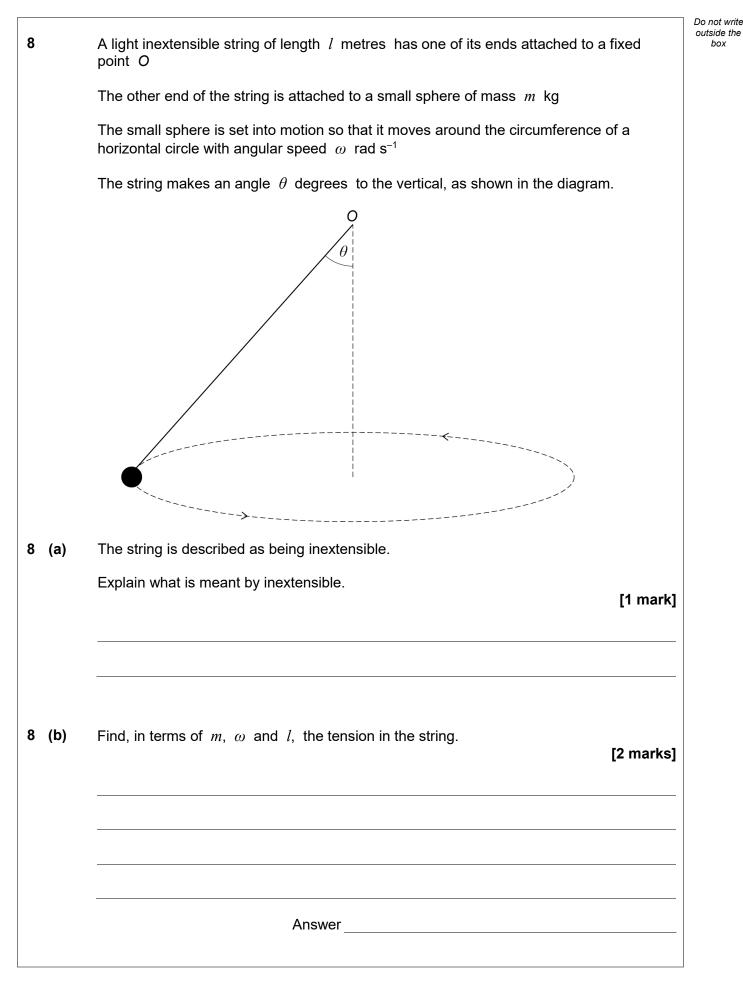
Turn over ►

			Donot
5		The position vector r metres of a body relative to a fixed origin O at time t seconds is given by	Do not writ outside the box
		$\mathbf{r} = \begin{bmatrix} e^{-3t}\cos(3t) \\ e^{-3t}\sin(3t) \end{bmatrix}$	
		The mass of the body is 6 kg	
5	(a)	Show that the distance between <i>O</i> and the body at time <i>t</i> seconds is equal to e^{-3t} metres. [3 marks]	
			-
			-
			-
			-
			-
5	(b)	The velocity of the body at time t seconds is v m s ⁻¹	-
		Find v in terms of t	
		Give your answer as a column vector. [2 marks]	
			-
			-
			-
		Answer	_

				Do not write
5	(c) (i)	Use your answer to part (b) to find an expression for the speed of the body at time t seconds.		outside the box
		Give your answer in the form $\sqrt{b} e^{ct}$, where <i>b</i> and <i>c</i> are integers.	[3 marks]	
		Answer		
5	(c) (ii)	Hence find the maximum kinetic energy of the body during its motion.	[2 marks]	
		Answer		10
			urn over 🕨	

	Do not write
A particle of mass 16 kg is moving on a straight line up a rough slope.	outside the box
The slope makes an angle of 28° with the horizontal, and the particle moves on a line of greatest slope.	
The coefficient of friction between the particle and the slope is 0.64	
When the particle passes through the point A on the slope, it is moving with speed 35 m s ⁻¹ towards the point B on the slope, as shown in the diagram.	
В	
35 m s-1	
28°	
The particle comes to rest at <i>B</i>	
Assume that the particle experiences no air resistance during its motion.	
Find the distance <i>AB</i> [5 marks	
	•

		Do not write
		outside the box
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		<u> </u>
	Answer	5
	Turn over for the next question	

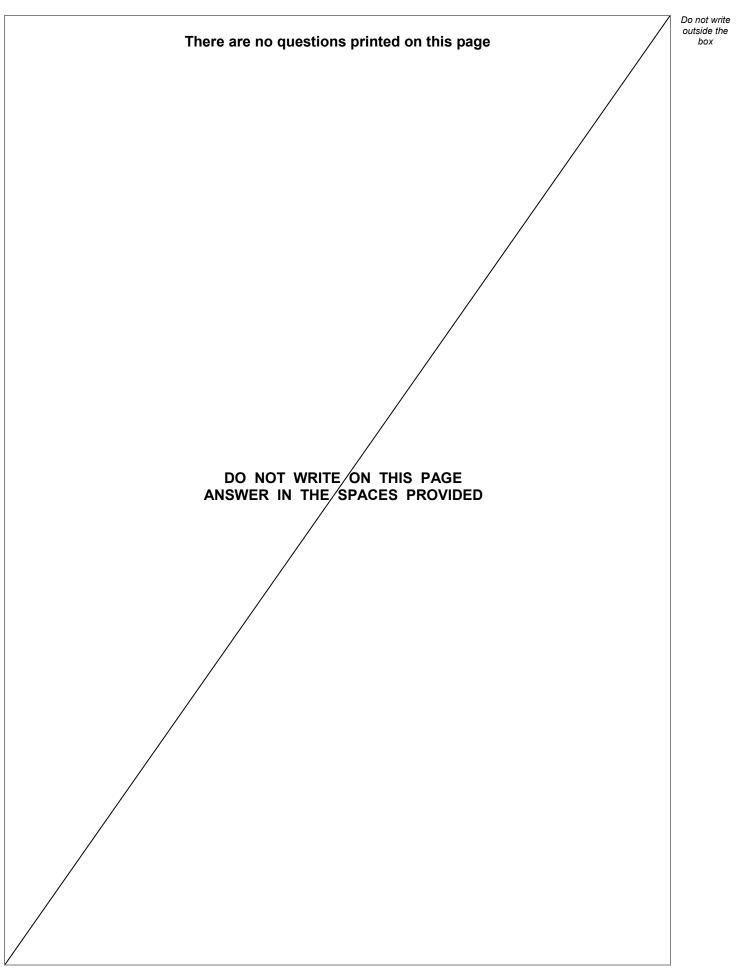


7	A particle is projected with speed $v \text{ m s}^{-1}$ at an angle θ degrees above the horizontal from a point O on horizontal ground.
	The horizontal displacement of the particle from O at time t seconds is x metres.
	The vertical displacement of the particle from O at time t seconds is y metres.
7 (a) (i)	Show that
	$y = x \tan \theta - \frac{g x^2}{2v^2} \sec^2 \theta$
	[5 marks]
(a) (ii)	State an assumption made in part (a)(i) .
	[1 mark]

 7 (b) A particle is projected with speed 30 m s⁻¹ at an angle α degrees above the horizontal from a point O on horizontal ground. When the horizontal displacement of the particle from O is 25 metres, the vertical displacement of the particle from O is 10 metres. Find the possible values for α [5 marks] 	Do not write outside the box
displacement of the particle from O is 10 metres. Find the possible values for α	
Anour	11
Answer	

8	(c)	Find, in terms of g, l and θ, the time taken for the small sphere to move once around the circumference of the horizontal circle. [3 marks]	Do not v outside box
8	(d)	$\label{eq:linear} Answer _$ It is observed that when $l = 0.71$, the small sphere moves around the circumference of the horizontal circle more than four times but less than five times in 6 seconds. Find the range of possible values of θ [3 marks]	
		Answer	9

A uniform rod of mass 12 kg has length 7 metres.

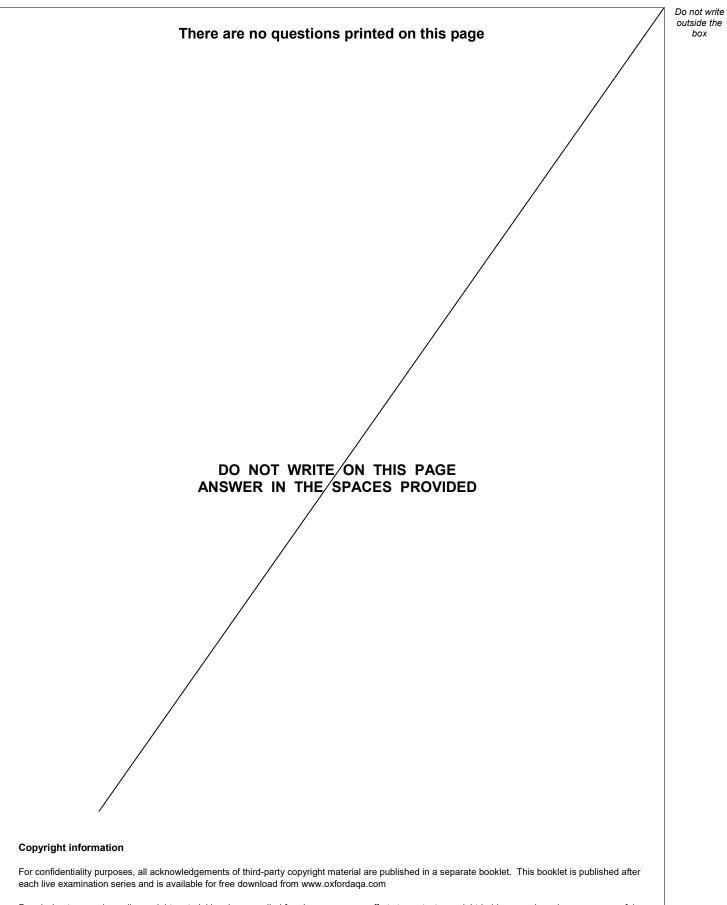

	The rod rests with one end against a rough vertical wall at the point A
	The other end of the rod is on rough horizontal ground at the point B
	The rod is in equilibrium but it is on the point of slipping at both A and B
	The vertical plane containing the rod is perpendicular to the wall and the angle between the rod and the horizontal ground is 75°, as shown in the diagram.
	Rough vertical wall
	The magnitude of the normal reaction force exerted on the rod due to its contact with the vertical wall at A is 15 newtons.
	The coefficient of friction between the wall and the rod is μ_1
	The coefficient of friction between the ground and the rod is μ_2
9 (a)	By taking moments about the point <i>B</i> , find the value of μ_1
	Give your value to three significant figures. [3 marks]

9

			Do not write outside the
			box
		$\mu_1 = $	
9 (b)	Find the value of μ_2	
		Give your value to three significant figures.	
		[5 marks]	
		$\mu_2 =$	8
		END OF QUESTIONS	

	Do not write outside the box
۱.	

Question	Additional page, if required. Write the question numbers in the left-hand margin.
number	Write the question numbers in the left-hand margin.



Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

