OXFORDAQA

INTERNATIONAL QUALIFICATIONS

Please write clearly in	ו block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

INTERNATIONAL AS FURTHER MATHEMATICS

(9665/FM02) Unit FPSM1 Pure Mathematics, Statistics and Mechanics

07:00 GMT

Thursday 16 May 2024

Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the OxfordAQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- There are three sections to this paper.
- The maximum mark for this paper is 80. There are 40 marks for **Section A**, 20 marks for **Section B** and 20 marks for **Section C**.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

Coofficer A	Do not outside
Section A	bo.
Answer all questions in the spaces provided	
Answer all questions in the spaces provided.	_
A curve passes through the point $(1, -3)$ and satisfies the differential equation	
$\frac{\mathrm{d}y}{\mathrm{d}x} = \sqrt{x^2 + 2y^2}$	
Use Euler's step-by-step method with a step length of 0.2 to estimate the value of y when $x = 1.4$	
Give your answer to four decimal places. [5 marks]	I
	5
	Section A Pure Mathematics Answer all questions in the spaces provided. A curve passes through the point $(1, -3)$ and satisfies the differential equation $\frac{dy}{dx} = \sqrt{x^2 + 2y^2}$ Use Euler's step-by-step method with a step length of 0.2 to estimate the value of y when $x = 1.4$ Give your answer to four decimal places. [5 marks]

2		The matrix P is defined by $\mathbf{P} = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$ where k is a positive constant.	Do not wr outside th box
		The matrix Q is defined by $\mathbf{Q} = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$	
2	(a)	Describe the transformation represented by matrix P [1 mar	k]
2	(b) (i)	Calculate the matrix QP giving your answer in terms of k	
		[2 mark	s]
			_
			_
		Answer	

2 (b) (ii) A triangle T_1 has an area of 4.5 square units.	Do out	not write tside the box
The triangle T_2 is the image of T_1 under the transformation matrix QP	on represented by the	
Find the area of triangle T_2		
	[3 marks]	
Answer		0
Turn over for the next question		
	Turn over ►	

3		The function f is given by	Do not write outside the box
		$f(x) = 8x^3 - 28x^2 + 34x - 17$	
		The equation $f(x) = 0$ has one positive root α	
2	(2)	Show that $1 < \alpha < 2$	
3	(a)	[2 marks]	
3	(b)	Starting with the interval $1 < \alpha < 2$ use interval bisection three times to find an interval of width 0.125 in which α must lie	
		[4 marks]	
		Answer	6

box

			Do not write
4	(c)	Use your line of best fit to estimate the value of a and the value of b	outside the box
		Give your values to one decimal place. [2 marks]	
		<i>a</i> = <i>b</i> =	
4	(d)	Use your values of a and b to estimate the value of u when $v = 0.26$	
		Give your answer to two significant figures.	
		Answer	10

5		The matrix A is defined by $\mathbf{A} = \begin{bmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$	Do not write outside the box
5	(a) (i)	It is given that $y = mx + c$ is an invariant line of the transformation represented by A	
		Find the possible values of m	
		Give your answers in exact form. [4 marks]	
		Answer	
5	(a) (ii)	Hence find the equations of the invariant lines of the transformation represented by A [3 marks]	
		Answer	

5	(b)	The matrix B represents a reflection.	outside the box
		The transformation represented by the matrix AB is an anticlockwise rotation	
		of $\frac{\pi}{2}$ radians about the origin.	
		Einel Alexandrian a field a mainten line familie a field i an managemente di bas. D	
		Find the equation of the mirror line for the reflection represented by B [6 marks]	
			13
		Answer	

Section B
Statistics
Answer all questions in the spaces provided.
The probability that Darius goes for a morning run is 0.35
The probability that he goes to a cafe given that he goes for a morning run is 0.79
The probability that he goes to a cafe given that he does not go for a morning run is 0.42
Find the probability that he does not go for a morning run given that he does not go to
a cate. [3 mark
Answer
— • • • • •
lurn over for the next question

IB/G/Jun24/FM02

3

Do not write outside the box

7		In an experiment, a biased coin is tossed 1000 times and lands with heads facing upwards 653 times.	Do not wri outside th box
7	(a)	Write down an estimate for the probability that the coin lands with heads facing upwards when the coin is tossed once. [1 mark]	
		Answer	
7	(b)	The random variable H is defined as $H = \begin{cases} 1 & \text{coin lands with heads facing upwards} \\ 0 & \text{otherwise} \end{cases}$	
		when the coin is tossed once. The probability generating function of H is $G_H(t)$	
7	(b) (i)	Use your answer to part (a) to find $G_H(t)$ [1 mark]	
		Answer	

7	(b) (ii)	Hence find $Var(H)$		Do not write outside the box
			[4 marks]	
		Answer		6
		Turn over for the post question		
		run over för the next question		
			Turn over ▶	•

Do not write outside the 8 The random variable X has a geometric distribution with parameter pIt is given that $P(X \le 3) = \frac{61}{125}$ Find the value of p8 (a) [2 marks] Answer 8 (b) The random variable Y has a discrete uniform distribution and takes values 1, 2, 3, ..., n It is given that $P(Y > 4) = \frac{7}{66}E(Y)$ 8 (b) (i) Find the value of n [4 marks]

box

			Do not write
			outside the
		Anouver	
8	(b) (ii)	It is given that $Var(X-Y) = 13$	
		Find the value of the product moment correlation coefficient between X and Y	
		Give your answer to three decimal places.	
		[o marks]	
			11
		Answer	

box

0 (a)	Pressure is a quantity that is measured in units of newtons per square metre, N m^{-2}
	Show that the dimensions of pressure are $ML^{-1}T^{-2}$
	[1 mark]
0 (b)	The pressure $P \ N \ m^{-2}$ at a depth of h metres below the surface of a liquid in a tank is given by
	$P = \rho g h$
	where
	ρ is the density of the liquid in kg m ⁻³
	g is the acceleration due to gravity in m s ⁻²
	Show that the formula $P = \rho \sigma h$ is dimensionally consistent
	[3 marks]

Turn over ►

11		Two particles P and Q are moving towards each other along a straight line on a smooth horizontal surface.	Do not write outside the box
		The particles collide.	
		Particle <i>P</i> has mass 5 kg and before the collision its speed is 3 m s ^{-1}	
		Particle Q has mass 3 kg and before the collision its speed is 2 m s ^{-1}	
		After the collision the direction of motion of particle P is unchanged and it moves with speed 0.375 m s ⁻¹	
11	(a)	Find the speed of particle <i>Q</i> after the collision. [3 mar	ks]
		Answer	
11	(b)	Find the magnitude of the impulse exerted on particle <i>P</i> by particle <i>Q</i> during the collision.	
		[2 mar	ks]
		Answer	5
		Turn ov	ver ►

IB/G/Jun24/FM02

		Do not write
12	A disc of mass 0.2 kg is sliding on a smooth horizontal surface when it collides with a fixed smooth vertical wall.	outside the box
	The wall is perpendicular to the path of the disc.	
	The magnitude of the force, F newtons, exerted on the disc by the wall at time t seconds after the disc first makes contact with the wall is given by	
	$F = 1800 \left(t - 10t^2 \right)$	
	for $0 \le t \le 0.1$	
	The disc is in contact with the wall for 0.1 seconds.	
12 (a)	Find the magnitude of the impulse exerted on the disc by the wall due to the collision.	
	State the units of your answer. [2 marks]	
	Answer Units	

12 (b)	The speed of the disc when it hits the wall is $u \text{ m s}^{-1}$		Do not write outside the box
	Find the range of possible values of u	[4 marks]	
	Answer		6
	END OF QUESTIONS		

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

.....

.....

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

	Do not write outside the box
argin.	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

