OXFORDAQA

INTERNATIONAL QUALIFICATIONS

(ease write clearly in block capitals.	
	entre number Candidate number	
	urname	
	prename(s)	
	andidate signature	

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS

(9665/FM03) Unit FP2 Pure Mathematics

Thursday 30 May 2024 07:00 GMT Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the OxfordAQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
TOTAL	

		Answer all questions in the spaces provided.	Do not v outside box
1		The matrix $\mathbf{M}_{R} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$ represents the single transformation R	
		The matrix $\mathbf{M}_{S} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ represents the single transformation S	
1	(a) (i)	Describe fully the single transformation R represented by the matrix M _R [2 marks]	
1	(a) (ii)	Describe fully the single transformation S represented by the matrix M _S [2 marks]	
1	(b)	The composite transformation T is obtained by carrying out S followed by R Find the 3×3 matrix \mathbf{M}_{T} which represents the transformation T [2 marks]	
		 M –	
		™⊤ 	

2		The vectors a , b and c are given by	Do not write outside the box
		a = i+2j+3k $b = 3i+3j+5k$ $c = -3i+tj+9k$	
		where t is a real number.	
2	(a)	Find a ×b [1 mark]	
		Answer	
2	(b)	In the case when a , b and c are coplanar, use a scalar triple product to find the value of t [3 marks]	
		Answer	
2	(c)	In the case when c is parallel to $\mathbf{a} \times \mathbf{b}$ find the value of t [2 marks]	
		Answer	6

3		The roots of the quartic equation	Do not writ outside the box
		$x^4 - px^2 + qx - r = 0$	
		are α , α , α and β	
		It is given that p , q and r are positive real numbers.	
2	(0)	$Chow that v^2 = 10$	
ა	(a)	Show that $p = 12r$ [4 marks]	
3	(b)	Express the product pr in terms of q	
		[2 marks]	
			<u> </u>
		Answer	
		Turn over ►	

		Do not write
4	A curve C has equation $y^2 = 4x$	outside the box
	The arc of <i>C</i> between the points $(3, 2\sqrt{3})$ and $(4, 4)$ is rotated through 2π radians about the <i>x</i> -axis.	
	Show that the area of the curved surface generated is $\frac{8\pi}{3} \left(5\sqrt{5} - 8 \right)$	
	[5 marks]
		-
		-
		-
		-
		-
		-
		_
		-
		-
		-
		_
		-
		-
		-
		-
		5

 Cose an integrating racio to find the general solution of the differential equation <u>d</u>_x + ¹/_x y = ¹/_x sin⁻¹x	5	Use an integrating factor to find the general solution of the differential equation	Do not write outside the
$\frac{0}{2x} + \frac{1}{x}y = \frac{1}{x}\sin^2 x$ Give your answer in the form $y = f(x)$ [5 marks]	5		
Give your answer in the form y = f(x) [5 marks]		$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{1}{x}y = \frac{1}{x}\sin^{-1}x$	
[6 marks]		Give your answer in the form $y = f(x)$	
		[5 marks]	
y =5			
y = 5			
		<i>y</i> =	5

6		It is given that	Do not write outside the box
		$z = \cos\theta + i\sin\theta$	
6	(a) (i)	Use de Moivre's theorem to show that $z^n + \frac{1}{z^n} = 2\cos n\theta$	
		[3 marks]	
6	(a) (ii)	Write down an expression for $z - \frac{1}{z}$ in terms of $\sin \theta$	
		[1 mark]	
		_ 1 _	
		z =	

6 (b)	Hence express $\cos^3 \theta \sin^4 \theta$ in the form		Do not write outside the box
	$p\cos\theta + q\cos3\theta + r\cos5\theta + s\cos7\theta$		
	where p , q , r and s are rational numbers.	[5 marks]	
	$\cos^3\theta \sin^4\theta =$		9

7 It is given that
$$y = (1+x)^2 \ln(1+x)$$

7 (a) Show that $\frac{d^2 y}{dx^2} - 2\ln(1+x) + 3$ [2 marks]
7 (b) Prove by induction that for all integers $n \ge 3$
 $\frac{d^n y}{dx^n} - (-1)^n + \frac{2(n-3)!}{(1+x)^{n-2}}$ [5 marks]

Do not write outside the box

7 (c)	Hence find the exact value for the sum of the coefficients of x^{10} and x^{11} in the
	Maclaurin series expansion for $(1+x)^2 \ln(1+x)$
	[2 marks]
	Answer

Turn over ►

8	Solve the differential equation
	$\frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} = 4 + 12x + 10 \sin x$
	given that $y = 1$ when $x = 0$ and $\frac{dy}{dx} = 5$ when $x = 0$
	Give your answer in the form $y = f(x)$ [10 marks]

Do not write outside the box

	Do no
	b
,	
v =	1

box

	Da stati
	Do not write outside the
	box
Anover	8
Answer	

IB/G/Jun24/FM03

10	The plane Π_1 has vector equation $\mathbf{r} \cdot \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} = 2$ The line <i>L</i> has Cartesian equation $\frac{x-7}{2} = 1 - y = \frac{z-3}{4}$	Do not write outside the box
10 (a)	Find the acute angle between the line L and the plane $\Pi_1^{}$	
	Give your answer to the nearest 0.1° [4 marks]	
	Answer	
10 (b)	The point <i>P</i> has coordinates $(4, 1, 15)$	
	Find the shortest distance from P to the line L	
	Give your answer in an exact form. [4 marks]	

			Do not write outside the
			box
	Answer		
10 (c)	The plane Π_2 has Cartesian equation $x - 3y + 2z = 1$		
	Find a vector equation for the line of intersection of the planes $~\Pi_1~$ and $~\Pi_2~$		
	Give your answer in the form $(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = 0$		
		[5 marks]	
			[]
	Answer		13

11	The matrix M is defined as $\mathbf{M} = \begin{bmatrix} 1 & 0 & 2 \\ 1 & c & -11 \\ 2 & -1 & 1 \end{bmatrix}$	Do not write outside the box
	where c is an integer.	
11 (a)	Find M ⁻¹ in terms of <i>c</i> [5 marks]	

Do not write outside the box

Answer

Question 11 continues on the next page

Turn over ►

11 (b)	It is given that the distinct eigenvalues of $\mathbf{M} = \begin{bmatrix} 1 & 0 & 2 \\ 1 & c & -11 \\ 2 & -1 & 1 \end{bmatrix}$ are λ_1 , λ_2 and λ_3 where $\lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3 = -4$	Do not write outside the box
11 (b) (i)	Show that <i>c</i> = 5 [5 marks]	

11	(b) (ii)	Find the three eigenvalues.	Do not write outside the box
		[2 marks]	
		Answer	
11	(b) (iii)	Find an eigenvector corresponding to the least eigenvalue. [3 marks]	
		Answer	15

12	The five roots of the equation $z^5 = 4 - 4i$ when plotted on an Argand diag vertices of a pentagon.	ram form the
12 (a)	Find the root that is closest to the Imaginary axis.	
	Give your answer in the form $r e^{i\theta}$, where $r > 0$ and $-\pi < \theta \le \pi$	[3 marks]
	Answer	
12 (b)	Find the product of the roots that lie above the Real axis.	
	Give your answer in the form $r e^{i\theta}$, where $r > 0$ and $-\pi < \theta \le \pi$	[2 marks]
	Answer	

12 (c)	Find the perimeter of the pentagon.	Do not write outside the box
	Give your answer in the form $a \sin(b \pi)$ where a and b are exact values	
	[2 marks]	
	Answer	7
	Turn over for the next question	
	Turn over ▶	

		1	Donot
13 (b)	Hence find the area of the shaded region R bounded by the line OA , the in the curve C	itial line and	outside box
	Give your answer in the form $\ln(a+b\sqrt{3})$ where <i>a</i> and <i>b</i> are integers.		
		[6 marks]	
	Answer		
12 (0)	Hence find the area of the region bounded by the surve C and the line AR		
13 (C)	Hence find the area of the region bounded by the curve C and the line Ab		
	Give your answer in an exact form.	[2 marks]	
		[]	
			<u> </u>
	Answer		11

A curve C has equation	Do out
$y = 7\cosh x - \sinh x - 4x + 4 \tanh^{-1} k$	
where k is a constant and $ k < 1$	
It is given that the line $y = 10$ is a tangent to the curve C	
Show that the exact value of k can be expressed in the form $k = \frac{e+p}{k}$	
where p and q are real numbers.	
[10 ma	arks]

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	

Do not write outside the box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

	Do not write outside the
iired.	box
eft-hand margin.	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

