

INTERNATIONAL QUALIFICATIONS

INTERNATIONAL AS **MATHEMATICS**

MA02

(9660/MA02) Unit PSM1 Pure Mathematics, Statistics and Mechanics

Mark scheme

June 2024

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaqa.com

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

Μ	Mark is for method
m	Mark is dependent on one or more M marks and is for method
Α	Mark is dependent on M or m marks and is for accuracy
В	Mark is independent of M or m marks and is for method and accuracy
E	Mark is for explanation
\checkmark or ft	Follow through from previous incorrect result
CAO	Correct answer only
CSO	Correct solution only
AWFW	Anything which falls within
AWRT	Anything which rounds to
ACF	Any correct form
AG	Answer given
SC	Special case
oe	Or equivalent
A2, 1	2 or 1 (or 0) accuracy marks
– <i>x</i> EE	Deduct x marks for each error
NMS	No method shown
PI	Possibly implied
SCA	Substantially correct approach
sf	Significant figure(s)
dp	Decimal place(s)
ISW	Ignore subsequent working

Q	Answer	Marks	Comments
1(a)	$5x = \frac{\log_a 7}{\log_a 4}$ or $5x = \log_4 7$ [=1.40367] or $10x = \log_2 7$ [=2.80735] or $x = \log_{1024} 7$ [=0.28073]	М1	Correctly expresses x , $5x$ or $10x$ in terms of logarithms. PI by correct final answer or correct value of x , $5x$ or $10x$ rounded or truncated to at least 3dp.
	$\left[x = \frac{1}{5}\log_4 7 =\right] 0.281$	A1	САО
		2	

Q	Answer	Marks	Comments
1(b)	$\begin{bmatrix} \log_{6} 180 = \\ \\ \log_{6} 36 + \log_{6} 5 \\ \text{or } \log_{6} 6^{2} + \log_{6} 5 \\ \text{or } \log_{6} 6 + \log_{6} 6 + \log_{6} 5 \\ \text{or } \log_{6} 2 + \log_{6} 90 \\ \text{or } \log_{6} 6 + \log_{6} 30 \end{bmatrix}$	M 1	oe Use of addition property of logarithms to form a correct numerical expression. Condone omission of base of logarithm
	$\left[\log_6 180 = \right] \ 2 + \log_6 5$	A1	Correct answer in the correct form, including base of logarithm. M1 not scored or working seen in relation to <i>a</i> and <i>b</i> scores M0A0
		2	

Question 1 Total	4	
------------------	---	--

Q	Answer	Marks	Comments
2(a)	y ,	B1	Curve in the correct form and only in the first and fourth quadrants. Must appear to be asymptotic to the y-axis and the line $x = \pi$ Line $x = \pi$ need not be seen.
	O $\frac{\pi}{2}$ πx	B1	Correct value of the <i>x</i> -intercept marked at point where their curve intersects the <i>x</i> -axis. Condone coordinates given or value given in degrees.
		2	

Q	Answer	Marks	Comments
2(b)	π [radians]	B1	Condone given in degrees.
		1	
	Question 2 Total	3	

Q	Answer	Marks	Comments
3(a)	$\frac{\sin\theta}{15} = \frac{\sin\frac{\pi}{5}}{9}$	М1	oe Correct use of Sine Rule. Allow 36° for $\frac{\pi}{5}$ radians.
	$\left[\theta = \sin^{-1}(0.97964) = \right]$ 1.369	A1	AWRT 1.369 Condone answer given in degrees. AWRT 78.4°
	$[\theta = \pi - 1.36867=]$ 1.773	A1ft	ft their acute angle. AWRT 1.773 Condone answer given in degrees. AWRT 101.6°
			If M1 A0 A0 awarded, allow SC1 for 1.37 and 1.77
		3	

Q	Answer	Marks	Comments
3(b)	[Area of Sector <i>OPQ</i>] $\frac{1}{2} \times 15^2 \times \frac{\pi}{5}$	М1	Use of Area = $\frac{1}{2}r^2\theta$ Condone use of degrees.
	[Area of Sector $OPQ =$] 70.68583 $\left[\text{cm}^2 \right]$ or $\frac{45\pi}{2} \left[\text{cm}^2 \right]$	A1	AWRT 70.7 PI by correct final answer.
	[Area of Triangle OQR] $\frac{1}{2} \times 9 \times 15 \times \sin\left(\pi - \frac{\pi}{5} - 1.773\right)$ or $\frac{1}{2} \times 9 \times 15 \times \sin 0.74035$ [Area of Triangle $OQR =$] 45.53199[cm ²]	M1 A1ft	Use of Area = $\frac{1}{2}ab \sin C$ ft their obtuse or acute angle from part (a) Condone use of degrees. AWRT 45.5 ft their obtuse angle from part (a) PI by correct final answer.
	[<i>A</i> =] 70.68583 – 45.53199 [<i>A</i> =] 25.2	A1ft	AWRT 25.2 ft their area of sector <i>OPQ</i> – their area of triangle <i>OQR</i> provided at least both M1 marks awarded <u>and</u> obtuse angle used Ignore units if included.
		5	

Question 3 to	8	
---------------	---	--

Q	Answer	Marks	Comments
4(a)	$\frac{17-8}{9-12} = -3$	M1	Method for finding the gradient of <i>AP</i> PI by correct gradient of <i>AP</i>
	[Gradient of $l = \frac{1}{3}$	A1ft	ft their gradient of <i>AP</i> May see in later working.
	$y - 8 = \frac{1}{3}(x - 12)$ or $y = \frac{1}{3}x + 4$	M1	oe Correct equation of <i>l</i> ft their gradient of <i>l</i> PI by correct final answer.
	(0,4)	A1	Correct coordinates of <i>B</i> Condone value of <i>y</i> -intercept given only.
		4	

$\sqrt{9^{2} + (17 - 4)^{2}}$ M1 Method for finding the lausing their y-coordinate [Length of $AB =]$ $5\sqrt{10}$ A1 Accept $\sqrt{250}$ PI by $2\sqrt{10}$, $8\sqrt{10}$, 40 c $x^{2} + (y - 4)^{2} [=k]$ or $\left[k = (5\sqrt{10} - 3\sqrt{10})^{2} = 40 \Rightarrow\right]$ $x^{2} + (y - n)^{2} = 40$ or $\left[k = (5\sqrt{10} + 3\sqrt{10})^{2} = 640 \Rightarrow\right]$ $x^{2} + (y - n)^{2} = 640$ $\left[C_{2}\right] x^{2} + (y - 4)^{2} = 40$ A1 A1 Accept $\sqrt{250}$ PI by $2\sqrt{10}$, $8\sqrt{10}$, 40 c A1 Correct LHS of equation ft their coordinates of E or $\left[k = (5\sqrt{10} + 3\sqrt{10})^{2} = 640 \Rightarrow\right]$ $x^{2} + (y - n)^{2} = 640$ A1	Q	Answer	Marks	Comments
$\begin{bmatrix} \text{Length of } AB = \end{bmatrix} 5\sqrt{10}$ $x^{2} + (y-4)^{2} [=k]$ or $\begin{bmatrix} k = (5\sqrt{10} - 3\sqrt{10})^{2} = 40 \Rightarrow \end{bmatrix}$ $x^{2} + (y-n)^{2} = 40$ or $\begin{bmatrix} x^{2} + (y-n)^{2} = 40 \end{cases}$ M1 $\begin{bmatrix} \text{Or} \\ \text{Equation of the correct} \\ \text{to } 40 \Rightarrow 640 \end{bmatrix}$	4(b)	$\sqrt{9^2 + (17 - 4)^2}$	M1	oe PI ft their coordinates of <i>B</i> Method for finding the length of <i>AB</i> using their <i>y</i> -coordinate of <i>B</i>
or $\begin{bmatrix} k = (5\sqrt{10} - 3\sqrt{10})^2 = 40 \Rightarrow \end{bmatrix}$ $x^2 + (y - n)^2 = 40$ or $\begin{bmatrix} x^2 + (y - n)^2 = 40 \end{bmatrix}$ M1 Or $\begin{bmatrix} x^2 + (y - n)^2 = 40 \end{bmatrix}$ Final Sector 1 is the correct of the correc		[Length of $AB =$] $5\sqrt{10}$	A1	Accept √250 PI by 2√10, 8√10,40 or 640
$\begin{bmatrix} C_2 \end{bmatrix} x^2 + (y-4)^2 = 40$ A2 A1: One correct equation A2: Both correct equation Equations do not need identified		or $\left[k = \left(5\sqrt{10} - 3\sqrt{10}\right)^2 = 40 \Longrightarrow\right]$ $x^2 + \left(y - n\right)^2 = 40$ or	М1	Equation of the correct form set equal
$\begin{bmatrix} \bigcup_{3} \end{bmatrix} x + (y-4) = 040 $		$\begin{bmatrix} C_2 \end{bmatrix} x^2 + (y-4)^2 = 40$ $\begin{bmatrix} C_3 \end{bmatrix} x^2 + (y-4)^2 = 640$	A2	A1: One correct equation.A2: Both correct equations.Equations do not need to be identified.
5			5	

Question 4 To	al 9	
---------------	------	--

Q	Answer	Marks	Comments
5(a)	$\begin{bmatrix} 6\sin\theta = \frac{\cos^2\theta - 9}{3 - \sin\theta} \end{bmatrix}$ $6\sin\theta (3 - \sin\theta) = \cos^2\theta - 9$ or $18\sin\theta - 6\sin^2\theta = \cos^2\theta - 9$	M1	Forms a correct equation containing $\cos^2 \theta$ with fractions removed
	$18\sin\theta - 6\sin^2\theta = \left(1 - \sin^2\theta\right) - 9$	M1	Use of $\sin^2 \theta + \cos^2 \theta = 1$ to eliminate $\cos^2 \theta$ eg $6 \sin \theta = \frac{(1 - \sin^2 \theta) - 9}{3 - \sin \theta}$
	$18\sin\theta - 6\sin^2\theta = -8 - \sin^2\theta$ $5\sin^2\theta - 18\sin\theta - 8 = 0$	A1	A correct unsimplified equation in $\sin\theta$ and $\sin^2\theta$ with brackets removed before AG Must be convincingly shown.
		3	

Q	Answer	Marks	Comments
5(b)	$\begin{bmatrix} 5\sin^2 3x - 18\sin 3x - 8 = 0 \Rightarrow \end{bmatrix}$ (5 sin 3x + 2)(sin 3x - 4) [= 0]	M 1	Attempt to solve the quadratic equation. May see use of the quadratic formula but must be a correct substitution. Condone θ for $3x$ PI by $[\sin 3x =] -\frac{2}{5}$ and $[\sin 3x =] 4$ seen.
	$sin 3x = -\frac{2}{5}$ and sin 3x = 4 rejected	A1	Both correct values for sin3x with sin3x = 4 rejected. Rejection PI in later working Condone θ for 3x
	$[3x=] 203.5[78178]^{\circ}$ or $[3x=] 336.4[21821]^{\circ}$	A1	Anything that rounds or truncates correctly to 1 dp. PI by AWRT 67.9° or AWRT 112.1° Allow $[3x=] -23.5[78178]^\circ$
	[<i>x</i> =] 67.9°,112.1°	B2,1	Condone more accurate values: $x = 67.85939^{\circ}$ $x = 112.14060^{\circ}$ Ignore values outside the given interval. If both correct answers given deduct 1 mark for each extra incorrect value in the given interval to a minimum of B0 If one correct answer only given then B1 if there is no more than one incorrect answer in the given interval.
		5	

Q	Answer	Marks	Comments
5(c)	$\begin{bmatrix} 3y + 15^\circ = 3x \implies y = x - 5^\circ \end{bmatrix}$		
	[y=] 62.9°, 107.1°	B1ft	ft their answer(s) to part (b) provided their value(s) for <i>y</i> are in the given interval.
		1	

Question 5 Total	9	
------------------	---	--

Q	Answer	Marks	Comments
6(a)	$[2\log_3(4x-1) - \log_3(2x+7) =] 3$ or $\log_3 27$	B1	Elimination of log ₃ from LHS PI in later working.
	$[2\log_3(4x-1)] = \log_3(4x-1)^2$	M1	Use of logarithm property seen inside or outside of an equation.
	$\left[\log_{3}(4x-1)^{2} - \log_{3}(2x+7) = \right]$ $\log_{3}\frac{(4x-1)^{2}}{2x+7}$	M1	Use of a second logarithm property seen inside or outside of an equation.
	$\left[\log_3 \frac{(4x-1)^2}{2x+7} = 3 \Longrightarrow\right]$ $\frac{(4x-1)^2}{2x+7} = 27$	М1	oe Correct equation with logarithms eliminated.
	$16x^{2}-8x+1=54x+189$ or $16x^{2}-62x-188=0$ and $8x^{2}-31x-94=0$	A1	oe Brackets expanded and fraction cleared before AG Must be convincingly shown.
		5	

Q	Answer	Marks	Comments
6(b)	$\begin{bmatrix} 8x^2 - 31x - 94 = 0 \Rightarrow \end{bmatrix}$ $(8x - 47)(x + 2) = 0$	М1	Attempt to solve the quadratic equation. May see use of the quadratic formula but must be a correct substitution. PI by $x = \frac{47}{8}$ and $x = -2$
	$[x=] \frac{47}{8}$	A1	oe CAO
		2	

Question 6 Total	7	
------------------	---	--

Q	Answer	Marks	Comments
7(a)	$\begin{bmatrix} P(A) \times P(B) = \end{bmatrix}$ 0.37×0.16 [=0.0592]	M1	Correct method to find $P(A) \times P(B)$ PI by 0.0592
	Not independent as $P(A) \times P(B) = 0.0592 \neq 0.07 = P(A \cap B)$	A1	Correct conclusion from correct working
		2	

Q	Answer	Marks	Comments
7(b)	$\left[P(A \cup B) = \right] 0.37 + 0.16 - 0.07$	M1	
	$\left[P(A \cup B) = \right]$ 0.46	A1	CAO
		2	

Q	Answer	Marks	Comments
7(c)	$\left[P(A \mid B) = \right] \frac{0.07}{0.16}$	M1	
	$[P(A B) =]$ 0.4375 or $\frac{7}{16}$	A1	САО
		2	

Question 7 Total	6	
------------------	---	--

Q	Answer	Marks	Comments
8(a)	[p=] 1-0.2-0.41-0.23=0.16	B1	AG Must be convincingly shown. Condone: $p + 0.20 + 0.41 + 0.23 = 1$ so $p = 0.16$
		1	

Q	Answer	Marks	Comments
8(b)	$-2 \times 0.16 + 1 \times 0.2 + 3 \times 0.41 + 0.23a = 4.1$	M1	Correct equation. oe
	[<i>a</i> =] 13	A1	
		2	

Q	Answer	Marks	Comments
8(c)	$\begin{bmatrix} E(X^2) = \\ & = \end{bmatrix} (-2)^2 \times 0.16 + 1^2 \times 0.2 \\ & + 3^2 \times 0.41 + 13^2 \times 0.23 \\ \begin{bmatrix} = 43.4 \end{bmatrix}$	M 1	oe Correct expression for $E(X^2)$ simplified or unsimplified. ft their <i>a</i> PI by correct value or correct variance.
	$\left[Var(X) = \right] 43.4 - 4.1^2 \left[= 26.59 \right]$	M 1	Correct expression for $Var(X)$ simplified or unsimplified. ft their $E(X^2)$ PI by correct variance.
	$\left[\text{Standard deviation} = \sqrt{26.59} = \right] 5.16$	A1	AWRT 5.16
		3	

Question 8 Tota	6	
-----------------	---	--

Q	Answer	Marks	Comments
9(a)(i)	$\begin{bmatrix}E(X) = \end{bmatrix} 9 \times 0.4 [= 3.6]$	M1	oe Correct expression for $E(X)$ PI
	$\left[E(Y-X) = 16.2 - 3.6 = \right] 12.6$	A1	oe
		2	

Q	Answer	Marks	Comments
9(a)(ii)	$[Var(X) =] 9 \times 0.4 \times 0.6 [= 2.16]$	M1	oe Correct expression for $Var(X)$ PI
	[Var(Y)=5-2.16=] 2.84	A1	oe
		2	

Q	Answer	Marks	Comments
9(b)	$\left[P(X \ge 1) > 0.92 \implies\right] P(X = 0) < 0.08$	M1	Use of 0.08 PI
	$0.6^n < 0.08$	m1	Forms a relationship involving only 0.6 ^{<i>n</i>} and 0.08 PI by 0.1296 or AWRT 0.0778 (0.07776)
	$\begin{bmatrix} \log 0.6^n < \log 0.08 \\ \Rightarrow n \log 0.6 < \log 0.08 \end{bmatrix}$ $\Rightarrow n > \frac{\log 0.08}{\log 0.6} [= 4.94]$	m1	Attempt at solving their relationship between 0.6 ⁿ and 0.08 PI by 4.94 oe
	[n=] 5	A1	САО
		4	

Question 9 Tota	8	
-----------------	---	--

Q	Answer	Marks	Comments
10	$1.6 = 7t + \frac{1}{2} \times (-9.8) \times t^2$	M1 A1	M1 : Use of $s = ut + \frac{1}{2}at^2$ Condone \pm 9.8, and 3 instead of 1.6 A1 : Fully correct.
	$4.9t^2 - 7t + 1.6 = 0$	М1	Arranges to three-term quadratic equation and attempts to solve.
	$t_1 = \frac{2}{7}, \ t_2 = \frac{8}{7}$	A1	Both values correct. AWRT 0.29, 1.14
	$\begin{bmatrix} t_2 - t_1 = \end{bmatrix} \frac{6}{7} $ [seconds]	A1ft	AWRT 0.86 Allow 0.85 ft their t_1 and t_2 (fractions, 2 sf or better) Condone $\frac{2}{7} \le t \le \frac{8}{7}$ but not $t = \frac{2}{7}, \frac{8}{7}$
10 Alt	$0^{2} = 7^{2} + 2(-9.8)s$ or $v^{2} = 7^{2} + 2(-9.8)(1.6)$	М1	Correct method to find maximum height above point of projection PI in later working or by $s = 3.9$ or $[\pm]0.9$ or correct method to find the speed at a height of 1.6 metres above point of projection
	s = 2.5 [metres] or $v = 4.2 \text{ [m s}^{-1} \text{]}$	A1	Correct maximum height above point of projection PI in later working or by $s = 3.9$ or $[\pm]0.9$ or correct speed at a height of 1.6 metres above point of projection
	$-0.9 = \frac{1}{2}(-9.8)t^{2}$ or 0 = 4.2 - 9.8t	М1	oe Correct method to find time taken to move from 3 metres above ground to maximum height or reverse
	$\begin{bmatrix} t = \end{bmatrix} \frac{3}{7}$	A1	oe Correct time. PI AWRT 0.43
	$[Time =] \frac{6}{7} [seconds]$	A1ft	ft their $t = \frac{3}{7}$ AWRT 0.86 Allow 0.85

Question 10 Tota	5
------------------	---

Q	Answer	Marks	Comments
11(a)	$\begin{bmatrix} F = \end{bmatrix} 0.3 \times 50g$	B1	A correct expression for friction seen or used. PI by $[F =]15g$ or 147
	$T - F = 50 \times 0.4$ and $mg - T = m \times 0.4$ or $mg - 0.3 \times 50g = 0.4(50 + m)$ or m(g - 0.4) = 20 + 15g or $mg - 167 = m \times 0.4$	M1 A1	 oe ft their <i>F</i> for M1 only. M1: Forms at least one correct equation of motion for the block/particle or forms an equation of motion for the system with at least two terms correct A1: Both equations of motion correct for the block and the particle, or the correct equation of motion for the system
	$m = \frac{167}{g - 0.4}$	m1	oe Attempt at solving for m using their equation(s) PI by $m = 18$
	<i>m</i> = 18	A1	AWRT 18 (17.76)
		5	

Q	Answer	Marks	Comments
11(b)	$v^{2} = 0^{2} + 2(0.4)(1.8)$ or $1.8 = 0.5(0.4)t^{2}$	M1	Attempt at an appropriate equation with values substituted. Allow sign errors.
	$v^{2} = 1.44$ and $[v =]1.2$ $[m s^{-1}]$ or $t = 3$ and $[v =]0.4 \times 3 = 1.2$ $[m s^{-1}]$	A1	AG Must be convincingly shown.
		2	

Q	Answer	Marks	Comments
11(c)	$\left[-0.3 \times 50g = 50a \Rightarrow\right]$		
	<i>a</i> = -2.94	B1	
	$0^2 = 1.2^2 + 2 \times (-2.94) \times s$	M1	Ignore signs using their a Allow if a value rounded.
	[s = 0.24]		
	[0.24 + 1.8 =] 2.04 [metres]	A1ft	Sums 1.8 and <i>s</i> ft their <i>s</i> provided M1 scored and final answer is greater than 1.8 AWRT 2.0 Condone 2.05
		3	

Question 11 Tot	10	
-----------------	----	--

Q	Answer	Marks	Comments
12	$3 \times 4 + 2 \times (-7) = 3v_A + 2 \times (-1)$	M1	Considers <i>B</i> not being reversed v_A not required.
	$\left[v_A=\right] 0 \left[m \ s^{-1}\right]$	A1	Allow a clear rejection of this case instead of $\begin{bmatrix} v_A = \end{bmatrix} 0 \begin{bmatrix} m \ s^{-1} \end{bmatrix}$
	$3 \times 4 + 2 \times (-7) = 3v_A + 2 \times 1$	M1	Considers <i>B</i> being reversed. PI by a full correct explanation after considering situation where <i>B</i> is not reversed
	$\begin{bmatrix} v_A = \end{bmatrix} \frac{4}{3} \left[\text{m s}^{-1} \right]$ or $\begin{bmatrix} v_A = \end{bmatrix} -\frac{4}{3} \left[\text{m s}^{-1} \right]$	A1	PI by a full correct explanation after considering situation where <i>B</i> is not reversed
	Direction of particle <i>B</i> has been reversed by the collision	E1	If they progress to 2 values for v_A , the valid value should be highlighted or the invalid situation rejected.
		_	

Question 12 Total 5
