

INTERNATIONAL QUALIFICATIONS

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS

FM04

(9665/FM04) Unit FS2 Statistics

Mark scheme

June 2024

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaqa.com

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

Μ	Mark is for method
m	Mark is dependent on one or more M marks and is for method
Α	Mark is dependent on M or m marks and is for accuracy
В	Mark is independent of M or m marks and is for method and accuracy
E	Mark is for explanation
\checkmark or ft	Follow through from previous incorrect result
CAO	Correct answer only
CSO	Correct solution only
AWFW	Anything which falls within
AWRT	Anything which rounds to
ACF	Any correct form
AG	Answer given
SC	Special case
oe	Or equivalent
A2, 1	2 or 1 (or 0) accuracy marks
– <i>x</i> EE	Deduct x marks for each error
NMS	No method shown
PI	Possibly implied
SCA	Substantially correct approach
sf	Significant figure(s)
dp	Decimal place(s)
ISW	Ignore subsequent working

Q	Answer	Marks	Comments
1	$ \begin{aligned} &H_{0}:\boldsymbol{\mu}_{A}=\boldsymbol{\mu}_{B} \\ &H_{1}:\boldsymbol{\mu}_{A}>\boldsymbol{\mu}_{B} \end{aligned} $	B1	Both hypotheses
	$z = \frac{8.2 - 6.5}{\sqrt{\frac{2.1^2}{7} + \frac{2.2^2}{9}}}$	M1	Applies formula
	= 1.57	A1	AWRT 1.57
	<i>z</i> (95%) = 1.6449	B1	Finds correct critical value AWRT 1.645 or 1.64 or finds correct probability AWRT 0.058
	1.57 < 1.65 Do not reject _{H_o}	A1ft	Correctly compares their z or t test statistic and their critical value or their p value and 0.05 (0.025 if a two-tailed test is attempted) and concludes that the null hypothesis is not rejected
	Insufficient evidence to suggest that the mean number of days a patient takes to recover from the illness is less for medicine <i>B</i> than medicine <i>A</i>	E1	Gives a conclusion in context based on a comparison of the correct test statistic and correct critical value oe Condone definite conclusion

otal 6

Q	Answer	Marks	Comments
2(a)	$E(R) = \frac{E(X_1) + 2E(X_2) + 3E(X_3)}{6}$ $= \frac{\lambda + 2\lambda + 3\lambda}{6}$	М1	Finds $E(R) = \frac{\lambda + 2\lambda + 3\lambda}{6}$ or unsimplified equivalent
	λ therefore unbiased estimator	A1	Must see conclusion and no errors
		2	

Q	Answer	Marks	Comments
2(b)(i)	$\operatorname{Var}(R) = \frac{\operatorname{Var}(X_1)}{6^2} + \frac{\operatorname{Var}(X_2)}{3^2} + \frac{\operatorname{Var}(X_3)}{2^2}$	M1	Finds $Var(R)$ in terms of $Var(X_1)$, $Var(X_2)$ and $Var(X_3)$ PI
	$=\frac{\lambda}{36}+\frac{\lambda}{9}+\frac{\lambda}{4}=\frac{7\lambda}{18}$	A1	oe
	Relative Efficiency = $\frac{\frac{1}{\operatorname{Var}(R)}}{\frac{1}{\operatorname{Var}(X_1)}} = \frac{\frac{18}{7\lambda}}{\frac{1}{\lambda}}$	М1	Applies relative efficiency formula either way round with their $Var(R)$ and $Var(X_1) = \lambda$
	$=\frac{18}{7}$	A1	AWRT 2.57
		4	

Q	Answer	Marks	Comments
2(b)(ii)	Estimator <i>R</i> is more efficient than estimator X_1 as $\frac{18}{7} > 1$	E1ft	Compares their relative efficiency with 1 and makes correct conclusion
		1	

Question 2 Total	7	
------------------	---	--

Q		Answe	r	Marks	Comments
3	Outcomes	Mode	Probability	M1	Identifies a possible outcome
	(0, 0, 0)	0	0.8 ³ [= 0.512]		Identifies all the outcomes for an
	(0, 0, 20) (0, 20, 0) (20, 0, 0)	0	$3 \times 0.8^2 \times 0.2$ [= 0.384]	M1	Finds at least one probability from the
	(0, 20, 20) (20, 0, 20) (20, 20, 0)	20	$3 \times 0.8 \times 0.2^2$ [= 0.096]	M1	table PI
	(20, 20, 20)	20	0.2 ³ [= 0.008]	A1	Pinds all probabilities in the table Pi
	m	0	20		
	P(M = m)	0.896	0.104	A1	oe

|--|

Q	Ar	nswer	Marks	Comments
4	H_0 : There is not an assolute lived in and holiday loce H_1 : There is an associ lived in and holiday loce lived in and holiday loce the second s	sociation between region ation ation between region ation	B1	Both hypotheses, variables must be stated in at least the null hypothesis oe
	Expected A	NA	M1	At least two expected values correct to at least 2 d.p.
	N 53.148 S 75.852	49.852 71.148	A1	All correct to at least 2 d.p.
	$\sum \frac{\left(O-E -0.5\right)^2}{E} = \frac{\left(E +1.5\right)^2}{75.852} = \frac{\left(E +1.5\right)^2}{75.852} + \frac{\left(62-71.148 -0.5\right)^2}{71.148} = \frac{\left(62-71.148 -0.5\right)^2}{71.148} = \frac{1}{1.148}$	$\frac{44-53.148 -0.5)^2}{53.148} + \frac{(59-49.852 -0.5)^2}{49.852}$	М1	Attempts to calculate test statistic Condone use of $\sum \frac{(O-E)^2}{E}$
	= 4.94		A1	AWRT 4.9
	$\chi_1^2(95\%) = 3.841$		B1	Finds correct critical value AWRT 3.8 or finds correct probability AWRT 0.026
	4.94 > 3.841 Reject н _о		A1ft	Correctly compares their χ^2 test statistic and their critical value or their <i>p</i> value and 0.05 and rejects null hypothesis
	Sufficient evidence to s association between re location	suggest that there is an egion lived in and holiday	E1	Gives a conclusion in context based on a comparison of the correct test statistic and correct critical value oe Condone definite conclusion

Question 4 Total	8	
------------------	---	--

Q	Answer		Comments
5(a)	X and Y are normally distributed	E1	States that X and Y are normally distributed or X and Y are independent
		1	

Q	Answer	Marks	Comments
5(b)	$H_0: \sigma_X = \sigma_Y$ $H_1: \sigma_X \neq \sigma_Y$	B1	Both hypotheses, oe
	$s_X^2 = 0.009995$	B1	
	$s_Y^2 = 0.004096$	B1	
	$\frac{{s_X}^2}{{s_Y}^2} = \frac{0.009995}{0.004096}$	M1	Either way round Pl
	= 2.44	A1	AWRT 2.44 or AWRT 0.41
	$F_{40,25}(99\%) = 2.453$	B1	Finds correct critical value corresponding to their test statistic AWRT 2.45 or AWRT 0.408 or finds correct probability AWRT 0.0103
	2.44 < 2.453 Do not reject н _о	A1ft	Correctly compares their F test statistic and their critical value or their probability and 0.01 (0.02 if a one tailed test is attempted) and does not reject the null hypothesis
	Insufficient evidence to suggest that the population standard deviation of male reaction times is different from the population standard deviation of female reaction times	E1ft	Gives a conclusion in context based on a comparison of their F test statistic and their corresponding critical value oe Must not be definite (eg use of "suggest", "support")
		8	

		Question 5 Total	9	
--	--	------------------	---	--

Q	Answer	Marks	Comments
6(a)(i)	$\mathbf{M}_{X}(t) = \mathbf{e}^{\mu t} \mathbf{M}_{Z}(\sigma t)$	M1	Applies formula
	$M_X(t) = e^{\mu t} e^{\frac{1}{2}\sigma^2 t^2} = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$	A1	
		2	

Q	Answer	Marks	Comments
6(a)(ii)	$\mathbf{M}_{X+Y}(t) = \mathbf{M}_{X}(t)\mathbf{M}_{Y}(t)$ $= e^{\mu t + \frac{1}{2}\sigma^{2}t^{2}} e^{\lambda(e^{t} - 1)}$	М1	Applies formula
	$\mathbf{M}_{X+Y}(t) = \mathrm{e}^{\mu t + \frac{1}{2}\sigma^{2}t^{2} + \lambda\left(\mathrm{e}^{t} - 1\right)}$	A1	
		2	

Q	Answer	Marks	Comments
6(b)(i)	$\mathbf{M}_{W}(t) = \int_{0}^{\ln 2} e^{tw} \times \frac{2}{3} e^{2w} dw$	M1	Applies mgf formula Condone missing or incorrect limits
	$M_{W}(t) = \int_{0}^{\ln 2} \frac{2}{3} e^{(t+2)w} dw$ $M_{W}(t) = \left[\frac{2e^{(t+2)w}}{3(t+2)}\right]_{0}^{\ln 2}$	A1	Correctly integrates Condone missing or incorrect limits
	$\mathbf{M}_{W}(t) = \frac{2\left(e^{(t+2)\ln 2} - 1\right)}{3(t+2)}$	A1	AG Must be convincingly shown
		3	

Q	Answer	Marks	Comments
6(b)(ii)	$\mathbf{M}'_{W}(t) = \frac{6(t+2)e^{(t+2)\ln 2}\ln 2 - 6\left(e^{(t+2)\ln 2} - 1\right)}{9(t+2)^{2}}$	M1	Applies quotient rule oe Condone one sign error
	$M'_{W}(t) = \frac{2(t\ln 2 + 2\ln 2 - 1)e^{(t+2)\ln 2} + 2}{3(t+2)^{2}}$	A1	CSO ACF provided numerator is $3(t+2)^2$ ISW once a correct form is seen
		2	

Q	Answer	Marks	Comments
6(b)(iii)	Mean = $M'_{W}(0) = \frac{2(2\ln 2 - 1)e^{2\ln 2} + 2}{3(2)^{2}}$	M1	Attempts to find their ${ m M}_W^\primeig(0)$
	Mean = 0.424	A1ft	AWRT 0.424 ft their $M'_W(t)$ if full marks not awarded in part (b)(ii)
		2	
		1	•

Question 6 Total	11	
------------------	----	--

Q	Answer	Marks	Comments
7(a)	z(96%) = 1.7507	B1	AWRT 1.75
	$115 \pm 1.7507 \times \frac{18}{\sqrt{200}}$	M1	Attempts to calculate one of the limits
	(112.77, 117.23)	A1	Correct upper and lower limits AWRT 112.77 and 117.23
	Power = $P\left(Z < \frac{112.77 - 116}{\frac{18}{\sqrt{200}}}\right) + P\left(Z > \frac{117.23 - 116}{\frac{18}{\sqrt{200}}}\right)$	М1	Identifies correct standardised probabilities for power or Type II error corresponding to their limits PI
	= 0.0056 + 0.1673	A1	Correctly calculates one of the probabilities AWRT 0.006 or 0.167 or calculates P(Type II error) AWFW [0.825, 0.828]
	= 0.173	A1	AWFW [0.172, 0.175] May be calculated using 1 – P(Type II error)
		6	

Q	Answer	Marks	Comments
7(b)	The power of the test decreases	E1	ое
		1	

|--|

Q	Answer	Marks	Comments
8(a)	z(99%)=2.3263	B1	AWRT 2.33
	z(96.5%)=1.8119	B1	AWRT 1.81
	$\overline{x} + 2.3263 \frac{\sigma}{\sqrt{40}} = 5243.65$ $\overline{x} - 1.8119 \frac{\sigma}{\sqrt{40}} = 4858.26$	M1 A1ft	M1: Forms at least one correct equation using their $z(99\%)$ or z(96.5%) A1ft: Forms both correct equations using their $z(99\%)$ and $z(96.5\%)$
	σ = \$589	A1	Condone omission of \$ sign
	$\overline{x} = $ \$5027	B1	Condone omission of \$ sign
		6	

Q	Answer	Marks	Comments
8(b)	z(98%) = 2.0537	B1	AWRT 2.05
	$2 \times 2.0537 \times \frac{589}{\sqrt{n}} = 300$	М1	Set up an equation of the form $k \times \text{their } z \times \frac{\text{their } \sigma}{\sqrt{n}} = 300$ oe where k = 1 or 2
	<i>n</i> = 65	A1	Allow $n = 66$
		3	

	Question 8 Total	9	
--	------------------	---	--

Q	Ans	swer	Marks	Comments
9(a)	$H_0: N$ has a binomial distribution B(5, 0.5) $H_1: N$ does not have a binomial distribution with B(5, 0.5)		5) ^{ion} B1	Both hypotheses B(5, 0.5) oe must be stated
	Number of heads 0 1 2 3 4 5	Expected frequency 6.25 31.25 62.5 62.5 31.25 6.25	M1 A1	M1: Finds one correct expected frequency A1: Finds all correct expected frequencies
	$\sum \frac{(O-E)^2}{E} = \frac{(11-6.25)^2}{6.25} + \frac{(40-31.25)^2}{31.25} + \frac{(75-62.5)^2}{62.5} + \frac{(48-62.5)^2}{62.5} + \frac{(22-31.25)^2}{31.25} + \frac{(4-6.25)^2}{6.25}$) ² M1	Attempts to calculate test statistic
	= 15.472		A1	AWRT 15.5 from correct work
	$\chi_5^2(99\%) = 15.086$		B1	Finds correct critical value AWRT 15.1 or correct probability AWRT 0.009
	15.472 > 15.086 Reject н _о		A1ft	Correctly compares their χ^2 test statistic and their critical value or their probability and 0.01 and rejects the null hypothesis
	Sufficient evidence to model is not a good fit	suggest that Aeryr	^{i's} E1	Gives a conclusion in context based on a comparison of the correct test statistic and correct critical value oe Condone definite conclusion
			8	

Q	Answer	Marks	Comments
9(b)	4	B1ft	ft Their degrees of freedom -1
		1	
	Outoption 0 Total	0	
	Question 9 Total	Э	

Q	Answer	Marks	Comments
10(a)	$\left[s_{p}^{2} =\right] \frac{(n-1) \times 5.4^{2} + (n+2) \times 5.2^{2}}{2n+1} = 27.933$	M 1	Forms correct equation oe
	56.2n + 24.92 = 55.866n + 27.933 $0.334n = 3.013$	m1	Rearranges equation to reach the form an+b=cn+d PI By sight of 9.02
	$n = 9.02 \Longrightarrow n = 9$	A1	cso
		3	

Q	Answer	Marks	Comments
10(b)	$ \begin{aligned} &H_{0}: \mu_{A} = \mu_{B} \\ &H_{1}: \mu_{A} < \mu_{B} \end{aligned} $	B1	Both hypotheses
	$t = \frac{43.2 - 39.4}{\sqrt{27.933\left(\frac{1}{9} + \frac{1}{12}\right)}}$	M1	Applies formula
	= 1.63	A1ft	AWRT 1.63 ft their positive integer <i>n</i>
	t ₁₉ (95%)=1.729	B1ft	Finds critical value AWRT 1.73 or finds probability AWRT 0.0597 ft their positive integer n , if $n > 30$ allow use of normal
	1.63 < 1.729 Do not reject _{Но}	A1ft	Correctly compares their t or z test statistic and their critical value or their probability and 0.05 (0.025 if a two tailed test is attempted) and concludes that the null hypothesis is not rejected
	Insufficient evidence to suggest that the mean salaries in town <i>B</i> are higher than the mean salaries in town <i>A</i>	E1ft	Gives a conclusion in context based on a comparison of the correct test statistic and correct critical value for their positive integer n Condone definite conclusion
		6	

Question 10 Total	9	