

INTERNATIONAL QUALIFICATIONS

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS FM03

(9665/FM03) Unit FP2 Pure Mathematics

Mark scheme

June 2024

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaqa.com

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

	М	Mark is for method
	IVI	
	m	Mark is dependent on one or more M marks and is for method
	Α	Mark is dependent on M or m marks and is for accuracy
	В	Mark is independent of M or m marks and is for method and accuracy
	Е	Mark is for explanation
V	or ft	Follow through from previous incorrect result
	CAO	Correct answer only
	CSO	Correct solution only
	AWFW	Anything which falls within
	AWRT	Anything which rounds to
	ACF	Any correct form
	AG	Answer given
	SC	Special case
	oe	Or equivalent
	A2, 1	2 or 1 (or 0) accuracy marks
	– <i>x</i> EE	Deduct x marks for each error
	NMS	No method shown
	PI	Possibly implied
	SCA	Substantially correct approach
	sf	Significant figure(s)
	dp	Decimal place(s)
	ISW	Ignore subsequent working

Q	Answer	Marks	Comments
1(a)(i)	Rotation [Through an angle of] 90° about the <i>y</i> -axis	M1 A1	Rotation oe
			SC1 for 'rotate' or 'rotated' or 'rotates' and 90° about the <i>y</i> -axis
		2	

Q	Answer	Marks	Comments
1(a)(ii)	Reflection	M1	Reflection
	[In plane] $x=0$	A1	x=0 oe eg y-z plane
			SC1 for 'reflect' or 'reflected' or 'reflects' in $x=0$
		2	

Q	Answer	Marks	Comments
1(b)	$\mathbf{M}_{R}\mathbf{M}_{S} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	М1	Correct order of multiplication $\mathbf{M}_{T} = \mathbf{M}_{R}\mathbf{M}_{S}$ and no more than one sign/numerical error in finding \mathbf{M}_{T} PI
	$\mathbf{M}_{T} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$	A1	
		2	

Question 1 To

Q	Answer	Marks	Comments
2(a)	$\mathbf{a} \times \mathbf{b} = \mathbf{i} + 4\mathbf{j} - 3\mathbf{k}$	B1	oe Column vector
		1	

Q	Answer	Marks	Comments
2(b)	$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = (\mathbf{i} + 4\mathbf{j} - 3\mathbf{k}) \cdot (-3\mathbf{i} + t\mathbf{j} + 9\mathbf{k}) = 0$	M1	Equating a relevant scalar triple product or equivalent determinant to 0
	-3+4t-27=0	A1ft	Correct evaluation of scalar triple product, using their cross product ft
	<i>t</i> = 7.5	A 1	Correct value of <i>t</i> oe
		3	

Q	Answer	Marks	Comments
2(c)	$\mathbf{c} = \lambda (\mathbf{a} \times \mathbf{b}) \Rightarrow (-3\mathbf{i} + t\mathbf{j} + 9\mathbf{k}) = \lambda (\mathbf{i} + 4\mathbf{j} - 3\mathbf{k})$	М1	$\mathbf{c} = \lambda (\mathbf{a} \times \mathbf{b})$ or $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = 0 \text{ used eg}$ $(36+3t)\mathbf{i} + (9-9)\mathbf{j} + (t+12)\mathbf{k} = 0$ or $\mathbf{a} \cdot \mathbf{c} = 0 \text{ or } \mathbf{b} \cdot \mathbf{c} = 0$
	$\left[\lambda = -3\right] \Longrightarrow t = -12$	A1	
		2	
			1

Question 2 Total	6	
------------------	---	--

Q	Answer	Marks	Comments
3(a)	$\left[x^4 - px^2 + qx - r \equiv \left(x - \alpha\right)^3 \left(x - \beta\right)\right]$		
	$\alpha + \alpha + \alpha + \beta = 3\alpha + \beta = 0$		
	$\alpha^{3}\beta = -r$ $\alpha^{2} + \alpha^{2} + \alpha^{2} + \alpha\beta + \alpha\beta + \alpha\beta = 3\alpha^{2} + 3\alpha\beta = -p$	M1 A1	M1: At least one of the three correct A1: All three correct
	a + a + a + ap + ap + ap = 5a + 5ap = p		
	eta=-3lpha		
	$\Rightarrow p = 6\alpha^2$; $r = 3\alpha^4$	A1	Either correct
	$p^2 = 36\alpha^4 = 12(3\alpha^4)$		
	$\Rightarrow p^2 = 12r$	A1	AG Must be convincingly shown
		4	

Q	Answer	Marks	Comments
3(b)	$\alpha^{3} + \alpha^{2}\beta + \alpha^{2}\beta + \alpha^{2}\beta = -q$ -q = $\alpha^{3} + 3\alpha^{2}\beta = \alpha^{3} - 9\alpha^{3} \Longrightarrow q = 8\alpha^{3}$	M 1	Condone $\alpha^3 + \alpha^2 \beta + \alpha^2 \beta + \alpha^2 \beta = +q$
	$pr = 18\alpha^6 = 18\left(\frac{q}{8}\right)^2 = \frac{9}{32}q^2$	A1	cso
		2	

Question 3 Total 6

Q	Answer	Marks	Comments
4	$y^{2} = 4x; 2y \frac{dy}{dx} = 4 \text{ or } \frac{dy}{dx} = \frac{2}{y} \left(= \frac{2}{\sqrt{4x}} \right)$	B1	Correct differentiation of either $y^2 = 4x$ or $y = 2\sqrt{x}$
	[Area= $2\pi \int y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$]		
	$=2\pi \int_{[3]}^{[4]} 2x^{0.5} \sqrt{1+\frac{1}{x}} dx$	M1	Substitution of $y = 2\sqrt{x}$ and their $\frac{dy}{dx}$ into $[2\pi] \int y\sqrt{1 + (\frac{dy}{dx})^2} dx$
	$= 4\pi \int_{[3]}^{[4]} (x+1)^{0.5} dx$	A1	
	$= 4\pi \left[\frac{2}{3}(x+1)^{1.5}\right]_{[3]}^{[4]}$	M1	Correct integration of $(x+1)^{0.5}$
	$=\frac{8\pi}{3}\Big(5\sqrt{5}-4\sqrt{4}\Big)$		Must see substitution line before final answer
	$=\frac{8\pi}{3}\Big(5\sqrt{5}-8\Big)$	A1	AG Must be convincingly shown

Question 4 Total 5

Q	Answer	Marks	Comments
5	$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{1}{x}y = \frac{1}{x}\sin^{-1}x$		
	I.F. is $\left[e^{\int \frac{1}{x} dx} = e^{\ln x}\right] = x$	M 1	
	$x\frac{\mathrm{d}y}{\mathrm{d}x} + y = \sin^{-1}x \Rightarrow \frac{\mathrm{d}}{\mathrm{d}x}(xy) = \sin^{-1}x$		
	$x y = \int \sin^{-1} x \mathrm{d}x$	М1	Multiplying both sides of the differential equation by their I.F. and integrating LHS to get $y \times I.F$
	$x y = x \sin^{-1} x - \int \frac{x}{\sqrt{1 - x^2}} dx$	M 1	Attempt at Integration by parts
	$x y = x \sin^{-1} x + \sqrt{1 - x^2} [+c]$	A1	oe Condone absence of $+c$
	$y = \sin^{-1}x + \frac{\sqrt{1 - x^2}}{x} + \frac{c}{x}$	A1	ACF
[1

Question 5 To	5
---------------	---

Q	Answer	Marks	Comments
6(a)(i)	$z^n = \cos n\theta + \mathrm{i}\sin n\theta$	M1	
	$z^{-n} = \cos(-n\theta) + i\sin(-n\theta)$ $= \cos(n\theta) - i\sin(n\theta)$	E1	As shown in Answer column or using $\frac{1}{\cos n\theta + i \sin n\theta} \times \frac{\cos n\theta - i \sin n\theta}{\cos n\theta - i \sin n\theta}$
	$z^n + \frac{1}{z^n} = 2\cos n\theta$	A1	AG Must be convincingly shown M1 E0 A1 is possible eg for those who just quote $z^{-n} = \cos(n\theta) - i\sin(n\theta)$
		3	

Q	Answer	Marks	Comments
6(a)(ii)	$z - \frac{1}{z} = 2i\sin\theta$	B1	
		1	

Q	Answer	Marks	Comments
6(b)	$\cos^{3}\theta\sin^{4}\theta = 2^{-3}\left(z+z^{-1}\right)^{3}\left(2i\right)^{-4}\left(z-z^{-1}\right)^{4}$	B1	
	$2^7 \cos^3 \theta \sin^4 \theta = (z + z^{-1})^3 (z - z^{-1})^4$		
	$= (z - z^{-1})(z^2 - z^{-2})^3$	M 1	PI
	$= (z - z^{-1})(z^{6} - 3z^{2} + 3z^{-2} - z^{-6})$ = $z^{7} - z^{5} - 3z^{3} + 3z + 3z^{-1} - 3z^{-3} - z^{-5} + z^{-7}$	A1	Correct expansion of $(z+z^{-1})^3 (z-z^{-1})^4$
	$= (z^{7} + z^{-7}) - (z^{5} + z^{-5}) - 3(z^{3} + z^{-3}) + 3(z + z^{-1})$	M1	Groups terms so as to use (a) PI
	$= 2\cos 7\theta - 2\cos 5\theta - 6\cos 3\theta + 6\cos \theta$ $\cos^3\theta \sin^4\theta$		
	$= \frac{3}{64}\cos\theta - \frac{3}{64}\cos^2\theta - \frac{1}{64}\cos^2\theta + \frac{1}{64}\cos^2\theta$	A1	
		5	

|--|

Q	Answer	Marks	Comments
7(a)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = \left] 2(1+x)\ln(1+x) + 1+x\right]$	M1	Product rule used
	$\left[\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right] = \left] 2\ln(1+x) + 2 + 1\right]$		Must see before final line
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2\ln(1+x) + 3$	A1	AG Must be convincingly shown
		2	

Q	Answer	Marks	Comments
7(b)	From (a): $\frac{d^{3}y}{dx^{3}} \left[= \frac{d}{dx} (2\ln(1+x)+3) \right] = \frac{2}{1+x}$ When $n = 3$, the given formula becomes $\frac{d^{3}y}{dx^{3}} = \frac{(-1)^{3-1}2(3-3)!}{(1+x)^{3-2}} = \frac{(-1)^{2}2(0)!}{(1+x)^{1}} = \frac{2}{(1+x)}$ [So formula is true for $n = 3$]	B1	Correct work to show formula true for $n = 3$
	Assume formula true for $n = k$ (*), ie $\frac{d^{k} y}{dx^{k}} = \frac{(-1)^{k-1} 2(k-3)!}{(1+x)^{k-2}}$ so $\frac{d^{k+1} y}{dx^{k+1}} \left[= \frac{d}{dx} \left(\frac{d^{k} y}{dx^{k}} \right) \right] = \frac{d}{dx} \left(\frac{(-1)^{k-1} 2(k-3)!}{(1+x)^{k-2}} \right)$	М1	Assumes formula true for $n = k$ and considers $\frac{d}{dx} \left(\frac{(-1)^{k-1} 2(k-3)!}{(1+x)^{k-2}} \right)$
	$= \frac{d}{dx} \left((-1)^{k-1} 2(k-3)! (1+x)^{-(k-2)} \right)$ = $(-1)^{k-1} 2(k-3)! \frac{d}{dx} \left((1+x)^{-(k-2)} \right)$ = $(-1)^{k-1} 2(k-3)! (-1)(k-2)(1+x)^{-(k-2)-1}$	A1	

$= (-1)^{k+1-1} 2(k-2)!(1+x)^{-(k+1-2)}$ $= \frac{(-1)^{k+1-1} 2(k+1-3)!}{(1+x)^{k+1-2}}$	A1	Must be convincingly shown
Hence formula is true for $n = k + 1$ (**) and since true for $n = 3$ (***), formula $\frac{d^n y}{dx^n} = \frac{(-1)^{n-1} 2(n-3)!}{(1+x)^{n-2}}$ is true for integers $n \ge 3$ by induction (****)	E1	Must have (*), (**), (***), present, previous 4 marks scored and a final statement (****) clearly indicating that it relates to positive integers \geq 3 by induction Condone $n = 3, 4, 5$
	5	

Q	Answer	Marks	Comments
7(c)	$\frac{(-1)^9 2(10-3)!}{(1+0)^8 10!} + \frac{(-1)^{10} 2(11-3)!}{(1+0)^9 11!}$	M1	PI correct answer
	$\left[-\frac{1}{360} + \frac{1}{495}\right] = -\frac{1}{1320}$	A1	
		2	
			-

Question 7

Q	Answer	Marks	Comments
8	Aux. equation $m^2 + 2m = 0$; $m = 0, -2$	M1	Forming and solving the correct aux. equation, getting at least $m = 0$ PI
	$y_{\rm CF} = A + B {\rm e}^{-2x}$	A1	Correct CF
	$y_{PI} = a x^2 + bx + C \cos x + D \sin x$	B1; B1	$y_{PI} = a x^2 + bx$ (B1) + $C \cos x + D \sin x$ (B1) seen or used
	$y'_{PI} = 2ax + b - C \sin x + D \cos x$ $y''_{PI} = 2a - C \cos x - D \sin x$ $2a - C \cos x - D \sin x + 4ax + 2b + 2D \cos x$ $-2C \sin x = 12x + 4 + 10 \sin x$	M1	Their $y'_{\rm PI}$ and $y''_{\rm PI}$ both substituted into the differential equation
	$4a=12 \Rightarrow a=3; 2a+2b=4 \Rightarrow b=-1;$ $-2C-D=10; -C+2D=0 \Rightarrow C=-4, D=-2$	A1	At least two correct
	$y_{\rm Pl} = 3x^2 - x - 2\sin x - 4\cos x$	A1	Correct particular integral
	$[y_{GS} =] A + Be^{-2x} + 3x^2 - x - 2\sin x - 4\cos x$	B1ft	Their CF + their PI with exactly two arbitrary constants
	When $x=0$, $\frac{dy}{dx}=5 \Rightarrow -2B-1-2=5$, $\Rightarrow B=-4$ When $x=0$, $y=1 \Rightarrow A+B-4=1$, $A=9$	A1	Either $A = 9$ or $B = -4$
	$y = 9 - 4 e^{-2x} + 3x^2 - x - 2 \sin x - 4 \cos x$	A1	

Question 8 Tot	l 10	
----------------	------	--

Q	Answer	Marks	Comments
9	$\int \frac{1+2x}{x+x^2} \mathrm{d}x = \ln\left(x+x^2\right) \ \left[+c\right]$	B1	
	$\int \frac{\sin 2x}{1-\cos 2x} \mathrm{d}x = \frac{1}{2} \ln \left(1-\cos 2x\right) \left[+c\right]$	B1	
	$\int_{0}^{\frac{\pi}{4}} \left(\frac{1+2x}{x+x^{2}} - \frac{\sin 2x}{1-\cos 2x} \right) dx$ $= \lim_{a \to 0} \int_{0}^{\frac{\pi}{4}} \left(\frac{1+2x}{x+x^{2}} - \frac{\sin 2x}{1-\cos 2x} \right) dx$	E1	Evidence of limit 0 having been replaced by a (oe) at any stage and $\lim_{a\to 0}$ seen or taken
	$= \lim_{a \to 0} \left[\ln \left(x + x^2 \right) - \frac{1}{2} \ln \left(1 - \cos 2x \right) \right]_a^{\frac{\pi}{4}} = \\ \ln \left(\frac{\pi}{4} + \frac{\pi^2}{16} \right) - \lim_{a \to 0} \left(\ln \left(a + a^2 \right) - \frac{1}{2} \ln \left(1 - \cos 2a \right) \right)$	М1	Substitution of limits in a correct manner
	$= \ln\left(\frac{\pi}{4} + \frac{\pi^2}{16}\right) - \lim_{a \to 0} \left(\frac{1}{2}\ln\left(\frac{\left(a + a^2\right)^2}{1 - \cos 2a}\right)\right) =$	M1	Expressing terms in <i>a</i> (oe) as a single In term at some stage
	$\ln\left(\frac{\pi}{4} + \frac{\pi^{2}}{16}\right) - \lim_{a \to 0} \left(\frac{1}{2}\ln\left(\frac{\left(a^{2} + 2a^{3} + a^{4}\right)}{1 - \left(1 - 2a^{2} + \frac{16a^{4}}{24} + \dots\right)}\right)\right)$	B1	Correct series for $\cos 2a$ as far as a^4 Accept $\cos 2a = 1 - 2a^2 + 0(a^4)$ or Correct series for $\sin a$ as far as a^3 Accept $\sin a = a + 0(a^3)$
	$= \ln\left(\frac{\pi}{4} + \frac{\pi^{2}}{16}\right) - \lim_{a \to 0} \left(\frac{1}{2}\ln\left(\frac{1 + 2a + a^{2}}{2 - \frac{2}{3}a^{2} + \dots}\right)\right)$	m1	Writing the expression involving <i>a</i> terms in a form so that the $\lim_{a\to 0} (f(a))$ is defined
	$=\ln\left(\frac{\pi}{4}+\frac{\pi^2}{16}\right)-\frac{1}{2}\ln\left(\frac{1}{2}\right)=\ln\left(\frac{\sqrt{2}\pi(4+\pi)}{16}\right)$	A1	ACF

Question 9 Total	8	
------------------	---	--

Q	Answer	Marks	Comments
10(a)	$\mathbf{d} = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix} ; \mathbf{n} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$	B1	Correct d and correct n , seen or used, where d is direction vector of <i>L</i> and n is direction vector of the normal to Π_1
	d . n = 2-1+12 [=13]	M1	Finds a numerical expression for the scalar product of their d and their n
	$\sqrt{2^{2} + 1^{2} + 4^{2}} \sqrt{1^{2} + 1^{2} + 3^{2}} \cos \theta = 13$ $\cos \theta = \frac{13}{\sqrt{231}}$	m1	ft their d and their n
	Acute angle between <i>L</i> and Π_1 = 90° - cos ⁻¹ $\left(\frac{13}{\sqrt{231}}\right)$ = 58.8°	Α1	САО
		4	

Q	Answer	Marks	Comments
10(b)	$\overrightarrow{OA} = \begin{bmatrix} 7\\1\\3 \end{bmatrix}$	B1	Finds a point on <i>L</i> PI
	$\overrightarrow{AP} = \pm \begin{bmatrix} -3\\0\\12 \end{bmatrix}$ or $\overrightarrow{AP} = \pm \begin{bmatrix} -3-2\lambda\\\lambda\\12-4\lambda \end{bmatrix}$	М1	Finds the vector between their point and P or Finds the vector between their general point on L and P
	$\overrightarrow{AP} \times \mathbf{d} = \begin{bmatrix} -3\\0\\12 \end{bmatrix} \times \begin{bmatrix} 2\\-1\\4 \end{bmatrix} = \begin{bmatrix} 12\\36\\3 \end{bmatrix}$ or $0 = \overrightarrow{AP} \cdot \mathbf{d} = \begin{bmatrix} -3-2\lambda\\\lambda\\12-4\lambda \end{bmatrix} \cdot \begin{bmatrix} 2\\-1\\4 \end{bmatrix} = -42+21\lambda$ $\lambda = 2$	М1	Obtains the vector product of their \overrightarrow{AP} and their direction vector or Sets the scalar product of their \overrightarrow{AP} and their direction vector = 0 to form a linear equation



Q	Answer	Marks	Comments
10(c)	$\mathbf{b} = \begin{bmatrix} 1\\1\\3 \end{bmatrix} \times \begin{bmatrix} 1\\-3\\2 \end{bmatrix} = \begin{bmatrix} 11\\1\\-4 \end{bmatrix}$	M1 A1	oe At least two components correct oe A correct b
	$\Pi_{1} : x + y + 3z = 2 ; \Pi_{2} : x - 3y + 2z = 1$ eg (s, 0, t) solving simultaneously s + 3t = 2 and $s + 2t = 1Common point (-1, 0, 1)$	M1 A1	Valid method to find a common point Any correct common point eg $\left(0, \frac{1}{11}, \frac{7}{11}\right)$, $\left(\frac{7}{4}, \frac{1}{4}, 0\right)$
	Equation of line of intersection of Π_1 and Π_2 $\begin{pmatrix} \mathbf{r} - \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix} \times \begin{bmatrix} 11 \\ 1 \\ -4 \end{bmatrix} = 0$	A1	oe but must be in the form $(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = 0$ eg $\left(\mathbf{r} - \left(\frac{7}{4}\mathbf{i} + \frac{1}{4}\mathbf{j}\right)\right) \times (11\mathbf{i} + \mathbf{j} - 4\mathbf{k}) = 0$
		5	

Question 10 To

Q	Answer	Marks	Comments
11(a)	Cofactor matrix	M1	One complete row or column or diagonal correct
	$\begin{bmatrix} c - 11 & -23 & -1 - 2c \\ -2 & -3 & 1 \\ -2c & 13 & c \end{bmatrix}$	A2	All nine entries correct else A1 for at least six entries correct
	det $\mathbf{M} = -3c - 13$ Inverse matrix $\mathbf{M}^{-1} =$	M1	Transpose of their cofactors with no more than one further error and division by their det $\mathbf{M} (\neq 0)$
	$=\frac{1}{-3c-13}\begin{bmatrix} c-11 & -2 & -2c\\ -23 & -3 & 13\\ -1-2c & 1 & c \end{bmatrix}$	A1	A correct \mathbf{M}^{-1} scores 5 marks
		5	

Q	Answer	Marks	Comments
11(b)(i)	$\det(\mathbf{M} - \lambda \mathbf{I}) = \begin{vmatrix} 1 - \lambda & 0 & 2 \\ 1 & c - \lambda & -11 \\ 2 & -1 & 1 - \lambda \end{vmatrix}$ $(1 - \lambda) \big((c - \lambda) (1 - \lambda) - 11 \big) + 2 \big(-1 - 2 (c - \lambda) \big)$	М1	Sets up and expands det $(\mathbf{M} - \lambda \mathbf{I})$ to remove all determinants
	$-\lambda^{3} + (2+c)\lambda^{2} - (2c-14)\lambda - 3c-13 = 0$	m1 A1	Forms a cubic polynomial in λ Correct cubic equation
	2c-14 = -4; $2c = 10$	M1	Uses $\frac{C}{A} = -4$ ft their cubic equation
	<i>c</i> = 5	A1	AG Must be convincingly shown
		5	

Q	Answer	Marks	Comments
11(b)(ii)	$\lambda^3 - 7\lambda^2 - 4\lambda + 28 = 0$	M1	Substitutes $c = 5$ into their cubic equation and solves to find three real distinct values of λ
	$\lambda=-2,\ 2,\ 7$	A1	Correct three values
		2	

Q	Answer	Marks	Comments
11(b)(iii)	$\begin{bmatrix} 1 & 0 & 2 \\ 1 & 5 & -11 \\ 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = -2 \begin{bmatrix} x \\ y \\ z \end{bmatrix};$ x + 2z = -2x x + 5y - 11z = -2y 2x - y + z = -2z	М1	$\mathbf{M}\mathbf{v} = \lambda_{\text{least}} \mathbf{v}$ oe and attempt to form a system of equations, ft their least value of λ
	3x + 2z = 0 x + 7y - 11z = 0 2x - y + 3z = 0 $z = \frac{-3x}{2}$ $y = \frac{-5x}{2}$ $x = 2, \ y = -5, \ z = -3;$ $\begin{bmatrix} 2 \\ -5 \\ -3 \end{bmatrix}$	A1ft A1	Eliminates so that each of two variables are written solely in terms of the third, with at least one correct An eigenvector in form $\beta \begin{bmatrix} 2\\ -5\\ -3 \end{bmatrix}$, $\beta \neq 0$
		3	

Question 11 Tota	15	
------------------	----	--

Q	Answer	Marks	Comments
12(a)	$4-4i = 4\sqrt{2} e^{i\left(-\frac{\pi}{4}\right)}$	B1	Correct modulus and argument PI a correct root
	$z^5 = 4\sqrt{2} e^{i\left(-\frac{\pi}{4}+2n\pi\right)}$		
	$z = \sqrt{2} e^{i\left(-\frac{\pi}{20} + \frac{2n\pi}{5}\right)}$ [for $n = 0, \pm 1, \pm 2$]	M1	If not stated in the general form award M1 for at least one correct root of the equation.
	[Root closest to the Imaginary axis is] $\sqrt{2} e^{i\left(-\frac{9\pi}{20}\right)}$	A1	CAO
		3	

Q	Answer	Marks	Comments
12(b)	[Roots above the Real axis are] $\sqrt{2} e^{i\left(\frac{7\pi}{20}\right)}$ and $\sqrt{2} e^{i\left(\frac{3\pi}{4}\right)}$	M1	oe ft their roots of $z^5 = 4 - 4i$ but only if exactly two roots are above the Real axis and inequalities are satisfied
	$\left[\text{Product} = 2 e^{i \left(\frac{22\pi}{20}\right)} \right] \qquad 2 e^{i \left(-\frac{9\pi}{10}\right)}$	A1	oe
		2	

Q	Answer	Marks	Comments
12(c)	[Length of each side of the pentagon is] $2 \times \sqrt{2} \sin\left(\frac{\pi}{5}\right)$	M1	PI
	[Perimeter of the pentagon is] $10\sqrt{2} \sin\left(\frac{1}{5}\pi\right)$	A1	In the form $a \sin(b \pi)$ with $a = 10\sqrt{2}$ oe exact form and $b = 0.2$ oe exact form
		2	

Question 12 Total 7

Q	Answer	Marks	Comments
13(a)	$x^{2} - y^{2} = 8;$ $r^{2} \cos^{2} \theta - r^{2} \sin^{2} \theta = 8$	M2,1	M2 :Correctly uses two of $x = r \cos \theta$, $y = r \sin \theta$, $x^2 + y^2 = r^2$ If not M2 then award M1 if only uses one of the three correctly
	$r^{2}\left(\cos^{2}\theta - \sin^{2}\theta\right) = 8 ; r^{2}\cos 2\theta = 8$ $r^{2} = \frac{8}{\cos 2\theta} = 8 \sec 2\theta ; r = \sqrt{8 \sec 2\theta}$	A1	AG Must be convincingly shown
		3	

Q	Answer	Marks	Comments
13(b)	At A, $[r = 4]$; $\tan \theta = \frac{y}{x} = \frac{2}{2\sqrt{3}} = \frac{1}{\sqrt{3}}$		
	$\theta = \frac{\pi}{6}$	B1	Seen or used
	[Area of R] = $\frac{1}{2} \int_{[0]}^{\left[\frac{\pi}{6}\right]} \left(\sqrt{8 \sec 2\theta}\right)^2 [d\theta]$	M1	Use of $\frac{1}{2}\int r^2[d\theta]$
	$=4\int_{\left[0\right]}^{\left[\frac{\pi}{6}\right]}\sec 2\theta \left[\mathrm{d}\theta\right]$	A1	oe
	$\int \sec 2\theta \left[\mathrm{d}\theta \right] = \frac{1}{2} \ln(\sec 2\theta + \tan 2\theta) + [c]$ [Area of R] = $\left[2 \ln(\sec 2\theta + \tan 2\theta) \right]_{[0]}^{\left[\frac{\pi}{6}\right]}$	M1	$k \ln(\sec 2\theta + \tan 2\theta)$ oe
	$=2\ln\left(\sec\left(\frac{\pi}{3}\right)+\tan\left(\frac{\pi}{3}\right)\right)$	A1	oe
	$2\ln\left(2+\sqrt{3}\right) = \ln\left(2+\sqrt{3}\right)^2$		
	$\ln(7+4\sqrt{3})$	A1	
		6	

Q	Answer	Marks	Comments
13(c)	[Required area]		
	= Area of triangle $OAB - 2 \times Area of R$		
	$=\frac{1}{2}(2\sqrt{3})(4)-2\times \ln(7+4\sqrt{3})$	M1	$=\frac{1}{2}(2\sqrt{3})(4)-2\times \text{ their Area of } R$
	2(-10)(1) -2(1)(1)(1)(0)		oe eg $\frac{1}{2}(4)^2 \sin\left(\frac{\pi}{3}\right) - 2 \times \ln(7 + 4\sqrt{3})$
			oe exact answer
	$=4\sqrt{3}-2\ln\bigl(7+4\sqrt{3}\bigr)$	A1	$eg \\ 4\sqrt{3} - 4\ln\left(2 + \sqrt{3}\right)$
			$4\sqrt{3} - 4\ln\left(2 + \sqrt{3}\right)$ $4\sqrt{3} - \ln\left(97 + 56\sqrt{3}\right)$
		2	

Question 13 Total	11	
-------------------	----	--

Q	Answer	Marks	Comments
14	y = 7 $\cosh x - \sinh x - 4x + 4 \tanh^{-1} k$ [Let A to be the point on C where the horizontal tangent $y = 10$ touches the curve C]		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 7\sinh x - \cosh x - 4$	B1	oe
	$\frac{dy}{dx} = 0$ at $A \implies \frac{7}{2}(e^x - e^{-x}) - \frac{1}{2}(e^x + e^{-x}) - 4 = 0$	M1	Correctly expresses sinh <i>x</i> and cosh <i>x</i> in terms of exponentials and equates their $\frac{dy}{dx}$ to 0
	$3e^{2x} - 4e^x - 4 = 0$	m1	Forms a quadratic equation in e^x
	$e^x = 2$, $e^x \neq -\frac{2}{3}$	A1	From correct quadratic equation gets $e^x = 2$ and indicates rejection of a negative value.
	$\Rightarrow x = \ln 2$	A1	Correct <i>x</i> -coordinate of A
	$10 = 7\cosh(\ln 2) - \sinh(\ln 2) - 4(\ln 2) + 4 \tanh^{-1} k$	M1	ft their <i>x</i> -coordinate of <i>A</i> PI
	$4 \tanh^{-1} k = 4 \ln 2 + 2$	A1	oe
	$4\left(\frac{1}{2}\ln\left(\frac{1+k}{1-k}\right)\right) = 4\ln 2 + 2$	M1	Uses $\tanh^{-1} k = \frac{1}{2} \ln \left(\frac{1+k}{1-k} \right)$ oe
	$\ln\left(\frac{1+k}{1-k}\right) = 2\ln 2 + \ln e = \ln(4e)$	m1	
	$\frac{1+k}{1-k} = 4e$		
	$k = \frac{e - 0.25}{e + 0.25}$	A1	ACF

|--|