

INTERNATIONAL QUALIFICATIONS

## INTERNATIONAL AS FURTHER MATHEMATICS FM01

(9665/FM01) Unit FP1 Pure Mathematics

Mark scheme

June 2024

Version: 1.0 Final



Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaqa.com

## **Copyright information**

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

## Key to mark scheme abbreviations

| Μ                       | Mark is for method                                                 |
|-------------------------|--------------------------------------------------------------------|
| m                       | Mark is dependent on one or more M marks and is for method         |
| Α                       | Mark is dependent on M or m marks and is for accuracy              |
| в                       | Mark is independent of M or m marks and is for method and accuracy |
| Е                       | Mark is for explanation                                            |
| $\sqrt{\mathbf{or}}$ ft | Follow through from previous incorrect result                      |
| CAO                     | Correct answer only                                                |
| CSO                     | Correct solution only                                              |
| AWFV                    | V Anything which falls within                                      |
| AWRT                    | Anything which rounds to                                           |
| ACF                     | Any correct form                                                   |
| AG                      | Answer given                                                       |
| SC                      | Special case                                                       |
| oe                      | Or equivalent                                                      |
| A2, 1                   | 2 or 1 (or 0) accuracy marks                                       |
| – <i>x</i> EE           | Deduct x marks for each error                                      |
| NMS                     | No method shown                                                    |
| PI                      | Possibly implied                                                   |
| SCA                     | Substantially correct approach                                     |
| sf                      | Significant figure(s)                                              |
| dp                      | Decimal place(s)                                                   |
| ISW                     | Ignore subsequent working                                          |

| Q    | Answer                                                                                                                     | Marks | Comments                                               |
|------|----------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------|
| 1(a) | $r = \sqrt{2^2 + \left(\sqrt{5}\right)^2} \qquad [=3]$ $\theta = \tan^{-1}\left(\frac{\sqrt{5}}{2}\right) \qquad [=0.841]$ | M1    | Correct modulus and/or argument<br>May be unsimplified |
|      | $z = 3(\cos(0.841) + i\sin(0.841))$                                                                                        | A1    |                                                        |
|      |                                                                                                                            | 2     |                                                        |

| Q    | Answer                                  | Marks   | Comments                                                                                                                                                                                                                               |
|------|-----------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1(b) | $z^* = 3(\cos(-0.841) + i\sin(-0.841))$ | M1 A1ft | <b>M1</b> : Accept the correct conjugate<br>written in any form.<br>eg $2-i\sqrt{5}$ or<br>$3(\cos(0.841) - i\sin(0.841))$<br><b>A1ft</b> : Answer in the correct form, <b>ft</b><br>their <i>r</i> and $-\theta$ from part <b>(a)</b> |
|      |                                         | 2       |                                                                                                                                                                                                                                        |

| Q       | Answer | Marks | Comments                                                                                   |
|---------|--------|-------|--------------------------------------------------------------------------------------------|
| 1(c)(i) | E<br>E | M1    | Points <i>P</i> and Q drawn as reflections of each other in the real axis – mark intention |
|         |        |       | Condone <i>P</i> and <i>Q</i> swapped or to the left of the imaginary axis                 |
|         |        | A1    | Correct rhombus                                                                            |
|         |        | 2     |                                                                                            |

| Q        | Answer | Marks | Comments    |
|----------|--------|-------|-------------|
| 1(c)(ii) | 4      | B1    | Accept 4+0i |
|          |        | 1     |             |

| Q         | Answer                                        | Marks | Comments                         |
|-----------|-----------------------------------------------|-------|----------------------------------|
| 1(c)(iii) | area $=\frac{1}{2} \times 4 \times 2\sqrt{5}$ | M1    | Full method for the area of OPRQ |
|           | $= 4\sqrt{5}$                                 | A1ft  | ft Their part <b>(c)(ii)</b>     |
|           |                                               | 2     |                                  |

| Question 1 Tc | al 9 |  |
|---------------|------|--|
|---------------|------|--|

| Q    | Answer                                                                | Marks | Comments                                        |
|------|-----------------------------------------------------------------------|-------|-------------------------------------------------|
| 2(a) | $(4+h)^3 = 4^3 + 3 \times 4^2 \times h + 3 \times 4 \times h^2 + h^3$ | M1    | At least 3 correct terms<br>May be unsimplified |
|      | $= 64 + 48h + 12h^2 + h^3$                                            | A1    |                                                 |
|      |                                                                       | 2     |                                                 |

| Q       | Answer                                                                                                                                                            | Marks      | Comments                                                                               |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------|
| 2(b)(i) | $(4+h)^3 + 7(4+h)$<br>= 64 + 48h + 12h <sup>2</sup> + h <sup>3</sup> + 28 + 7h                                                                                    | M1         | Substitutes $4 + h$ into $x^3 + 7x$ and<br>expands<br>May be unsimplified<br><b>PI</b> |
|         | $= 92 + 55h + 12h^{2} + h^{3}$<br>Gradient of line<br>$= \frac{92 + 55h + 12h^{2} + h^{3} - (4^{3} + 7 \times 4)}{4 + h - 4}$ $= \frac{55h + 12h^{2} + h^{3}}{h}$ | <b>M</b> 1 | May be unsimplified                                                                    |
|         | $= 55 + 12h + h^2$                                                                                                                                                | A1         |                                                                                        |
|         |                                                                                                                                                                   | 3          |                                                                                        |

| Q        | Answer                                                   | Marks | Comments                                                                                                                                |
|----------|----------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 2(b)(ii) | Gradient of curve<br>= $\lim_{h \to 0} (55 + 12h + h^2)$ | M1    | Considers their part <b>(b)(i)</b> as $h \rightarrow 0$                                                                                 |
|          | [=55+0+0]=55                                             | A1ft  | Obtains the correct limit of their part<br>(b)(i) as $h \rightarrow 0$<br>ft their $a + bh + h^2$<br>SC1 for their 55 following $h = 0$ |
|          |                                                          | 2     |                                                                                                                                         |

| Question 2 Total | 7 |  |
|------------------|---|--|
|------------------|---|--|

| Q | Answer                                                                                                                               | Marks | Comments                                                                                                                                                                                    |
|---|--------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | $\sum_{r=1}^{n} (ar^{3} + br^{2}) = \frac{a}{4}n^{2}(n+1)^{2} + \frac{b}{6}n(n+1)(2n+1)$                                             | М1    | Correct expression in <i>a</i> , <i>b</i> and <i>n</i><br>May be unsimplified<br><b>PI</b><br>or forms a correct equation in <i>a</i> and/or<br><i>b</i> independent of <i>n</i>            |
|   | Comparing coefficients of $n^4$ : $\frac{a}{4} = \frac{15}{12}$<br>Comparing coefficients of <i>n</i> : $\frac{b}{6} = \frac{4}{12}$ | m1    | <ul> <li>Forms a correct equation in <i>a</i> (or <i>b</i>) only</li> <li><b>PI</b></li> <li>or forms a second correct equation in <i>a</i> and <i>b</i> independent of <i>n</i></li> </ul> |
|   | <i>a</i> = 5                                                                                                                         | A1    |                                                                                                                                                                                             |
|   | <i>b</i> = 2                                                                                                                         | A1    |                                                                                                                                                                                             |

|  |  | Question 3 Total | 4 |  |
|--|--|------------------|---|--|
|--|--|------------------|---|--|

| Q | Answer                    | Marks | Comments                                                                                                                                                              |
|---|---------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 |                           |       | Writes a correct unsimplified expression for $\alpha$                                                                                                                 |
|   | $(5-i)+\alpha = -4$       | M1    | Or forms a correct equation in $\alpha$ only (other than the given quadratic)                                                                                         |
|   |                           |       | ft their w if calculated first                                                                                                                                        |
|   | $\alpha = -9 + i$         | A1    |                                                                                                                                                                       |
|   | (5-i)(-9+i) = w           | М1    | Writes a correct unsimplified<br>expression for $w$<br>Forms a correct equation in $w$ only<br>eg $(5-i)^2 + 4(5-i) + w = 0$<br>ft their $\alpha$ if calculated first |
|   | $-45 - i^2 + 5i + 9i = w$ |       |                                                                                                                                                                       |
|   | w = -44 + 14i             | A1    |                                                                                                                                                                       |
|   | Question 4 Total          | 4     |                                                                                                                                                                       |

| Q | Answer                                                                                                     | Marks | Comments                                                                                                                                                         |
|---|------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | $\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t}$ | B1    | Writes, or uses, a correct chain rule connecting <i>V</i> , <i>h</i> and <i>t</i>                                                                                |
|   | $\frac{\mathrm{d}V}{\mathrm{d}h} = 12h^2$                                                                  | M1    | Differentiates <i>V</i> with respect to <i>h</i> <b>oe</b><br>Accept $mh^2$ for any non-zero <i>m</i><br>or $mV^{-\frac{2}{3}}$ for $\frac{dh}{dV}$<br><b>PI</b> |
|   | When $h = 2.5$ , $\frac{dV}{dh} = 12 \times 2.5^2$                                                         | m1    | Substitutes $h = 2.5$ into their $\frac{dV}{dh}$<br>or substitutes $V = 62.5$ into their $\frac{dh}{dV}$                                                         |
|   | $\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{1}{12 \times 2.5^2} \times (-16)$                                 | m1    | Full correct substitution for<br>$\frac{dh}{dt} = \frac{dh}{dV} \times \frac{dV}{dt}$ Condone 16 in place of -16                                                 |
|   | rate of increase $= -\frac{16}{75}$<br>rate of decrease $= 0.21 \text{ [cm s}^{-1} \text{ to 2 sf ]}$      | A1    | Accept more significant figures or $\frac{16}{75}$<br>Condone a rate of increase instead                                                                         |
|   |                                                                                                            |       |                                                                                                                                                                  |

|  |  | Question 5 Total | 5 |  |
|--|--|------------------|---|--|
|--|--|------------------|---|--|

| Q       | Answer                                               | Marks | Comments                                                                    |
|---------|------------------------------------------------------|-------|-----------------------------------------------------------------------------|
| 6(a)(i) | $\frac{1}{r} - \frac{1}{r+1} = \frac{r+1-r}{r(r+1)}$ |       |                                                                             |
|         | $= \frac{1}{r(r+1)}$                                 | B1    | Must include at least one intermediate line of working leading to <b>AG</b> |
|         |                                                      | 1     |                                                                             |

| Q        | Answer                                                                                        | Marks | Comments                                                                                                                                                                         |
|----------|-----------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6(a)(ii) | $\sum_{r=1}^{n} \frac{1}{r(r+1)} = \sum_{r=1}^{n} \left( \frac{1}{r} - \frac{1}{r+1} \right)$ | B1    | Writes as a sum of $\frac{1}{r} - \frac{1}{r+1}$<br>Condone omission of brackets<br><b>PI</b> by correct use of the method of differences                                        |
|          | $= \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3}$                                     | M1    | Writes at least two pairs of fractions of<br>the form $\frac{1}{r} - \frac{1}{r+1}$                                                                                              |
|          | +<br>+ $\frac{1}{n-1} - \frac{1}{n}$<br>+ $\frac{1}{n} - \frac{1}{n+1}$                       | М1    | Writes at least three pairs of fractions<br>of the form $\frac{1}{r} - \frac{1}{r+1}$ including the<br>correct first pair, the correct last pair,<br>and at least one other pair |
|          | $= \frac{1}{1} - \frac{1}{n+1}$                                                               |       |                                                                                                                                                                                  |
|          | $= \frac{n+1-1}{n+1}$                                                                         |       |                                                                                                                                                                                  |
|          | $=\frac{n}{n+1}$                                                                              | A1    | ISW                                                                                                                                                                              |
|          |                                                                                               | 4     |                                                                                                                                                                                  |

| Q    | Answer                                     | Marks | Comments                     |
|------|--------------------------------------------|-------|------------------------------|
| 6(b) | $\sum_{r=1}^{\infty} \frac{1}{r(r+1)} = 1$ | B1ft  | ft Their <b>part (a)(ii)</b> |
|      |                                            | 1     |                              |

| Q    | Answer                                                                                                            | Marks | Comments                                                                                                      |
|------|-------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------|
| 6(c) | $\sum_{r=1001}^{2000} \frac{1}{r(r+1)} = \sum_{r=1}^{2000} \frac{1}{r(r+1)} - \sum_{r=1}^{1000} \frac{1}{r(r+1)}$ | M1    | Correctly splits the required sum into<br>two sums of the form $\sum_{r=1}^{n} \frac{1}{r(r+1)}$<br><b>PI</b> |
|      | $= \frac{2000}{2001} - \frac{1000}{1001}$                                                                         |       |                                                                                                               |
|      | $= \frac{1000}{2003001}$                                                                                          | A1    |                                                                                                               |
|      |                                                                                                                   | 2     |                                                                                                               |

| Question 6 Total | 8 |  |
|------------------|---|--|
|------------------|---|--|

| Q    | Answer       | Marks | Comments |
|------|--------------|-------|----------|
| 7(a) | <i>y</i> = 1 | B1    |          |
|      |              | 1     |          |

| Q    | Answer                          | Marks | Comments                                                                               |
|------|---------------------------------|-------|----------------------------------------------------------------------------------------|
| 7(b) | $a^2 - 4 \times 1 \times 3 < 0$ | M1    | Considers the discriminant of the denominator<br>Inequality not required for this mark |
|      | <i>a</i> <sup>2</sup> < 12      | A1    |                                                                                        |
|      |                                 | 2     |                                                                                        |

| Q    | Answer                                             | Marks | Comments                                                     |
|------|----------------------------------------------------|-------|--------------------------------------------------------------|
| 7(c) | $k = \frac{x^2}{x^2 + ax + 3}$                     |       |                                                              |
|      | $kx^2 + kax + 3k = x^2$                            | M1    | Forms a quadratic equation in $x$ in terms of $k$            |
|      | $(k-1)x^2 + kax + 3k = 0$                          |       |                                                              |
|      | No intersection points, so $(ka)^2 - 4(k-1)3k < 0$ | M1    | Correctly applies the discriminant to their quadratic in $x$ |
|      | $k^2 a^2 - 12k^2 + 12k < 0$                        | M1    | Sets their discriminant $< 0$                                |
|      | $k^2(12-a^2)-12k > 0$                              | A1    | AG Must be convincingly shown                                |
|      |                                                    | 4     |                                                              |

| Q    | Answer                                           | Marks | Comments                                                                  |
|------|--------------------------------------------------|-------|---------------------------------------------------------------------------|
| 7(d) | Stationary points occur when $y^2(12-5)-12y = 0$ | M1    | Forms an equation in $y$<br>Accept $k$ instead of $y$                     |
|      | y(7y-12)=0                                       |       |                                                                           |
|      | 12                                               | A1    | At least one correct <i>y</i> -coordinate Condone $k$ instead of <i>y</i> |
|      | $y = 0$ or $y = \frac{1}{7}$                     | A1    | Both <i>y</i> -coordinates correct and no incorrect <i>y</i> -coordinates |
|      |                                                  | 3     |                                                                           |
|      | Question 7 Total                                 | 10    |                                                                           |

| Q    | Answer                                                                                         | Marks | Comments                                                                   |
|------|------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------|
| 8(a) | $(\alpha + \beta)^4 = \alpha^4 + 4\alpha^3\beta + 6\alpha^2\beta^2 + 4\alpha\beta^3 + \beta^4$ | M1 A1 | M1: At least three correct terms<br>May be unsimplified<br>A1: All correct |
|      |                                                                                                | 2     |                                                                            |

| Q    | Answer                                                                                                      | Marks | Comments                                                                                                                         |
|------|-------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------|
| 8(b) | $\left(\alpha+\beta\right)^4-4\alpha^3\beta-6\alpha^2\beta^2-4\alpha\beta^3=\alpha^4+\beta^4$               |       |                                                                                                                                  |
|      | $\alpha^{4} + \beta^{4} = (\alpha + \beta)^{4} - 4\alpha\beta(\alpha^{2} + \beta^{2}) - 6(\alpha\beta)^{2}$ | M1    | Rearranges to write $\alpha^4 + \beta^4$ in terms<br>of $\alpha + \beta$ and $\alpha\beta$ and $\alpha^2 + \beta^2$<br><b>PI</b> |
|      | $= (\alpha + \beta)^{4} - 4\alpha\beta ((\alpha + \beta)^{2} - 2\alpha\beta) - 6(\alpha\beta)^{2}$          | M1    | Replaces $\alpha^2 + \beta^2$ with<br>$(\alpha + \beta)^2 - 2\alpha\beta$<br>PI                                                  |
|      | $\alpha^{4}+\beta^{4}=(\alpha+\beta)^{4}-4\alpha\beta(\alpha+\beta)^{2}+2(\alpha\beta)^{2}$                 | A1    | ACF<br>eg $\left[\left(\alpha+\beta\right)^2-2\alpha\beta\right]^2-2(\alpha\beta)^2$                                             |
|      |                                                                                                             | 3     |                                                                                                                                  |

| Q       | Answer                         | Marks | Comments |
|---------|--------------------------------|-------|----------|
| 8(c)(i) | $\alpha + \beta = \frac{1}{2}$ | B1    |          |
|         | $\alpha\beta=3$                | B1    |          |
|         |                                | 2     |          |

| Q        | Answer                                                                                                                                                                                                              | Marks | Comments                                                                                                                                                                                                                                                                                                           |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8(c)(ii) | New sum $= \frac{\alpha^2}{\beta^2} + \frac{\beta^2}{\alpha^2} = \frac{\alpha^4 + \beta^4}{\beta^2 \alpha^2}$<br>$= \frac{(\alpha + \beta)^4 - 4\alpha\beta(\alpha + \beta)^2 + 2(\alpha\beta)^2}{(\alpha\beta)^2}$ | М1    | Writes the new sum in terms of $\alpha + \beta$<br>and $\alpha\beta$<br>ft Their $\alpha^4 + \beta^4$<br>PI<br>Accept<br>$\frac{(\alpha + \beta)^2 - 2\alpha\beta - 12(\alpha + \beta) + 72}{\alpha\beta - 6(\alpha + \beta) + 36}$<br>for roots $\frac{\alpha - 6}{\beta - 6}$ and $\frac{\beta - 6}{\alpha - 6}$ |
|          | $=\frac{\left(\frac{1}{2}\right)^{4}-4\times 3\times \left(\frac{1}{2}\right)^{2}+2\times 3^{2}}{3^{2}}=\frac{241}{144}$                                                                                            | A1    | РІ                                                                                                                                                                                                                                                                                                                 |
|          | New product = $\frac{\alpha^2}{\beta^2} \times \frac{\beta^2}{\alpha^2} = \frac{\alpha^2 \beta^2}{\beta^2 \alpha^2} = 1$                                                                                            | B1    | РІ                                                                                                                                                                                                                                                                                                                 |
|          | [New equation is]<br>$x^{2} - \frac{241}{144}x + 1 = 0$ ]                                                                                                                                                           | M1    | ft Their new sum and new product                                                                                                                                                                                                                                                                                   |
|          | $144x^2 - 241x + 144 = 0$                                                                                                                                                                                           | A1    | Accept any integer multiple                                                                                                                                                                                                                                                                                        |
|          |                                                                                                                                                                                                                     | 5     |                                                                                                                                                                                                                                                                                                                    |

| Question 8 Tota | 12 |  |
|-----------------|----|--|
|-----------------|----|--|

| Q    | Answer                                | Marks | Comments |
|------|---------------------------------------|-------|----------|
| 9(a) | $\frac{1}{2}(2+0i + 0 + 4i) = 1 + 2i$ |       |          |
|      | <i>c</i> = 2                          | B1    |          |
|      |                                       | 1     |          |

| Q    | Answer                                                                    | Marks | Comments                                                              |
|------|---------------------------------------------------------------------------|-------|-----------------------------------------------------------------------|
| 9(b) | gradient of <i>L</i> is $-1 \div \left(-\frac{4}{2}\right) = \frac{1}{2}$ | B1    | Correct calculation for the gradient of<br>L<br>PI by axis intercepts |
|      | lm(z)                                                                     | B1    | Straight line through the 1st, 2nd and 3rd quadrants                  |
|      | 312                                                                       | B1    | Correct imaginary axis intercept<br>Condone $\frac{3}{2}i$            |
|      | -3 0 Re(z)                                                                | B1    | Correct real axis intercept                                           |
|      |                                                                           | 4     |                                                                       |

| Q       | Answer           | Marks | Comments                |
|---------|------------------|-------|-------------------------|
| 9(c)(i) | a = -(-3+0i) = 3 | B1ft  | ft Their real intercept |
|         |                  | 1     |                         |

| Q        | Answer                            | Marks | Comments                                             |
|----------|-----------------------------------|-------|------------------------------------------------------|
| 9(c)(ii) | $b = \frac{1.5}{3} = \frac{1}{2}$ | B1ft  | ft Their axis intercepts or their gradient if stated |
|          |                                   | 1     |                                                      |
|          |                                   |       |                                                      |
|          |                                   |       |                                                      |

|--|

| Q     | Answer                                | Marks | Comments                                                                                                               |
|-------|---------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------|
| 10(a) | $(x-0)^2 + (y-9)^2$ or $[\pm](y+3)$   | B1    | Writes a correct distance from P to $(0,9)$ or to $y = -3$<br>Seen or used                                             |
|       | $\sqrt{(x-0)^2+(y-9)^2} = \pm(y+3)$   | М1    | Forms an equation in <i>x</i> and <i>y</i> using their distances <b>PI</b>                                             |
|       | $(x-0)^{2}+(y-9)^{2}=(y+3)^{2}$       | M1    | Removes the square root correctly                                                                                      |
|       | $x^2 + y^2 - 18y + 81 = y^2 + 6y + 9$ |       |                                                                                                                        |
|       | $x^2 = 24y - 72$                      | A1    | If <b>B0M0M0</b> then award <b>SC2</b> for<br>$x^2 = 24y + b$ or $x^2 = ay - 72$<br>for non-zero <i>a</i> and <i>b</i> |
|       |                                       | 4     |                                                                                                                        |

| Q        | Answer           | Marks | Comments                                                                          |
|----------|------------------|-------|-----------------------------------------------------------------------------------|
| 10(b)(i) | $y^2 = 24x - 72$ | B1ft  | <b>oe</b><br><b>ft</b> Their $x^2 = ay + b$<br>for non-zero <i>a</i> and <i>b</i> |
|          |                  | 1     |                                                                                   |

| Q         | Answer | Marks | Comments                                            |
|-----------|--------|-------|-----------------------------------------------------|
| 10(b)(ii) |        | B1    | Correct shape, symmetrical about the <i>x</i> -axis |

|            |                                                            | B1ft  | Correct <i>x</i> -axis intercept<br><b>ft</b> Their $-\frac{b}{a}$                                |
|------------|------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------|
|            |                                                            | 2     |                                                                                                   |
| Q          | Answer                                                     | Marks | Comments                                                                                          |
| 10(b)(iii) | The line meets $C_2$ when<br>$(mx)^2 = 24x - 72$           | M1    | Forms a quadratic equation in $x$ (or $y$ ) in terms of $m$                                       |
|            | $m^2 x^2 - 24x + 72 = 0$                                   | A1    | Correct 3-term quadratic equation in $x$<br>in terms of $m$ equal to zero<br>[= 0 can be implied] |
|            | Two intersection points, so $(-24)^2 - 4m^2 \times 72 > 0$ | М1    | Correctly substitutes their quadratic coefficients into $b^2 - 4ac > 0$                           |
|            | $576 > 288m^2$                                             |       |                                                                                                   |
|            | $m^2 < 2$                                                  | A1    | <b>PI</b> by correct final inequalities                                                           |
|            | $-\sqrt{2} < m < 0$ , $0 < m < \sqrt{2}$                   | A1    |                                                                                                   |
|            |                                                            | 5     |                                                                                                   |

| Q         | Answer                               | Marks | Comments                                                                                |
|-----------|--------------------------------------|-------|-----------------------------------------------------------------------------------------|
| 10(b)(iv) | $y = mx$ is a tangent when $m^2 = 2$ | M1    | Replaces the inequality with equals <b>PI</b> By one correct tangent (allow <b>ft</b> ) |
|           | $y = x\sqrt{2}$ and $y = -x\sqrt{2}$ | A1ft  | ft Their $m^2 = 2$                                                                      |
|           |                                      | 2     |                                                                                         |

|--|