

INTERNATIONAL QUALIFICATIONS

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS FM05

(9665/FM05) Unit FM2 Mechanics

Mark scheme

June 2024

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaqa.com

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

Μ	Mark is for method
m	Mark is dependent on one or more M marks and is for method
Α	Mark is dependent on M or m marks and is for accuracy
В	Mark is independent of M or m marks and is for method and accuracy
E	Mark is for explanation
or ft	Follow through from previous incorrect result
CAO	Correct answer only
CSO	Correct solution only
AWFW	Anything which falls within
AWRT	Anything which rounds to
ACF	Any correct form
AG	Answer given
SC	Special case
oe	Or equivalent
A2, 1	2 or 1 (or 0) accuracy marks
– <i>x</i> EE	Deduct x marks for each error
NMS	No method shown
PI	Possibly implied
SCA	Substantially correct approach
sf	Significant figure(s)
dp	Decimal place(s)
ISW	Ignore subsequent working

Q	Answer	Marks	Comments
1(a)	$0^2 = u^2 + 2 \times (-9.8) \times 0.4$	M1	Uses constant acceleration equation or two term energy equation
	$u = \sqrt{7.84} = \frac{14}{5} = 2.8 \left[\text{m s}^{-1} \right]$	A1	Correct rebound speed
		2	

Q	Answer	Marks	Comments
1(b)	$3.24 = 0.3 \times 2.8 - 0.3 \times -u$	M 1	Uses impulse formula to create equation, PI by 8 m s ⁻¹
	<i>u</i> = 8	A1	Correct impact speed Accept -8
	Impact Speed $\times e = 2.8$	М1	Uses their impact speed to form an equation for e PI by $e = 0.35$
	$e = \frac{2.8}{8} = \frac{7}{20} = 0.35$	A1	Correct value for e
		4	

Question 1 Tota	6	
-----------------	---	--

Q	Answer	Marks	Comments
2(a)	Resultant force in vertical direction		
	$6a = \frac{300}{2} \times 0.5 - 6 \times 9.8$	M1	Three term equation of motion
	$a = 2.7 \left[\text{m s}^{-2} \right]$	A1	Correct magnitude AWRT 2.7
	Direction is vertically upwards	B1	Correct direction
		3	

Q	Answer	Marks	Comments
2(b)	Maximum speed when		
	$6 \times 9.8 = \frac{300}{2} \times e$	M1	Equation to find extension for max speed
	<i>e</i> = 0.392	A1	Correct extension
	$\frac{1}{2} \times \frac{300}{2} \times 0.5^2 = \frac{1}{2} \times \frac{300}{2} \times 0.392^2 + 6 \times 9.8 \times 0.108 + \frac{1}{2} \times 6 \times v^2$	M1 A1	M1: Four term energy equation A1: Correct equation
	$v = 0.54 \left[m s^{-1} \right]$	A1	Correct speed AWRT 0.54
		5	

	Question 2 Total	8	
--	------------------	---	--

Q	Answer	Marks	Comments
3(a)	$\int_0^5 10 e^{-0.1x} \mathrm{d}x$	M1	Uses formula for work done by a variable force Condone missing or incorrect limits
	$= \left[-100e^{-0.1x} \right]_{0}^{5}$	A1	Correct integration Condone missing or incorrect limits
	$=100-100e^{-0.5}$		
	= 39.346		
	= 39 [J to 2 sf]	A1	Correct work done AWRT 39
		3	

Q	Answer	Marks	Comments
3(b)(i)	Friction = $0.2 \times 2 \times 9.8$		
	= 3.92	B1	Correct friction force
	$\frac{1}{2} \times 2 \times v^2 = 39.3 - 5 \times 3.92$	M1	Forms three term energy equation
	$v = 4.4 \left[m s^{-1} \right]$	A1	Correct speed
		3	

Q	Answer	Marks	Comments
3(b)(ii)	$\int_0^d 10e^{-0.1x} \mathrm{d}x = 3.92d$	M1	Forms equation using the formula for the work done by a variable force
	$f(d) = 100 - 100e^{-0.1d} - 3.92d = 0$	A1	Correct formula
	If $d = 22.5$ f $(d) = 1.26$ If $d = 23.5$ f $(d) = -1.66$	M1	Uses numerical method to justify answer If $d = 22$ f $(d) = 2.67$ If $d = 24$ f $(d) = -3.15$
	$\therefore d = 23$ to the nearest metre	A1	Correct conclusion from correct working
		4	

	Question 3 Total	10	
Q	Answer	Marks	Comments
4(a)	$2v\frac{\mathrm{d}v}{\mathrm{d}x} = -\left(v^2 - 9\right)$	B1	Correct differential equation
	$\int \frac{v}{v^2 - 9} \mathrm{d}v = \int -\frac{1}{2} \mathrm{d}x$	M1	Separates variables
	$\frac{1}{2}\ln(v^2 - 9) = -\frac{1}{2}x + c$	M1 A1	M1: Integrates to get a In term A1: Correct integration Condone missing constant of integration
	$x = 0, v = 10 \implies c = \frac{1}{2} \ln 91$	M1	Finds constant of integration
	$\frac{1}{2}\ln(v^2-9) = -\frac{1}{2}x + \frac{1}{2}\ln 91$		
	$\frac{v^2 - 9}{91} = e^{-x}$		
	$v = \sqrt{9 + 91e^{-x}}$	A1	Correct expression for v
		6	

	Question 4 Total	11	
--	------------------	----	--

Q	Answer	Marks	Comments
5	$0 = 10\sin\alpha t - 4.9\cos(30^\circ)t^2$	M1	Equation for the time of flight
	$t = \frac{10\sin\alpha}{4.9\cos(30^\circ)}$	A1	Correct time of flight
	$4 = 10\cos\alpha \left(\frac{10\sin\alpha}{4.9\cos(30^\circ)}\right)$ $-4.9\sin(30^\circ) \left(\frac{10\sin\alpha}{4.9\cos(30^\circ)}\right)^2$	М1	Equation for motion parallel to plane using their time
	$\frac{4 \times 4.9}{100} = \frac{\cos\alpha \sin\alpha}{\cos(30^\circ)} - \frac{\sin(30^\circ)\sin^2\alpha}{\cos^2(30^\circ)}$	A1	Correct equation
	$0.588 = 2\sqrt{3} \cos\alpha \sin\alpha - 2 \sin^2\alpha$		
	$\frac{0.588}{\cos^2 \alpha} = 2\sqrt{3} \frac{\cos \alpha \sin \alpha}{\cos^2 \alpha} - 2 \frac{\sin^2 \alpha}{\cos^2 \alpha}$		
	$0.588(1+\tan^2\alpha) = 2\sqrt{3}\tan\alpha - 2\tan^2\alpha$	M1	Uses trig identity to create a quadratic in $\tan \alpha$
	2.588 $\tan^2 \alpha - 2\sqrt{3} \tan \alpha + 0.588 = 0$	A1	Correct quadratic equation
	$\tan \alpha = 0.199$ or 1.139	M1	Solves their quadratic to obtain two real roots
	$\alpha = 11$ or 49 [to nearest degree]	A1	Correct values for α

Q	Answer	Marks	Comments
6(a)	$I = 2\begin{bmatrix} 0.4\\3 \end{bmatrix} - 2\begin{bmatrix} 4\\3 \end{bmatrix}$	M1	Uses vector form of impulse formula
	$= \begin{bmatrix} -7.2\\0 \end{bmatrix}$	A1	Correct impulse as a vector
	I = 7.2 [N s]	A1ft	Correct magnitude, must be positive ft their impulse vector of the form $\begin{bmatrix} k \\ 0 \end{bmatrix}$
		3	

Q	Answer	Marks	Comments
6(b)	$2\begin{bmatrix}4\\3\end{bmatrix}+3\begin{bmatrix}-1\\5\end{bmatrix}=2\begin{bmatrix}0.4\\3\end{bmatrix}+3v_B$	M1 A1	M1: Uses conservation of momentum or impulse to form a vector equation for the velocity of <i>B</i>A1: Correct equation
	$v_{B} = \frac{1}{3} \begin{bmatrix} 4.2\\15 \end{bmatrix} = \begin{bmatrix} 1.4\\5 \end{bmatrix} \begin{bmatrix} m \ s^{-1} \end{bmatrix}$	A1	Correct velocity
		3	

Q	Answer	Marks	Comments
6(c)	Velocity of A does not change in the direction $\begin{bmatrix} 0\\1 \end{bmatrix}$, so line of centres must	М1	States that the velocity of <i>A</i> or <i>B</i> does not change in one direction or that the impulse is in the direction $\begin{bmatrix} 0\\1 \end{bmatrix}$
	be perpendicular to this vector, which is in the direction $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	A1	Uses this to create a valid argument
		2	

Q	Answer	Marks	Comments
6(d)	0.4 - 1.4 = -e(4 - (-1))	M1	Uses coefficient of restitution formula
	<i>e</i> = 0.2	A1	Correct value
		2	
	Question 6 Total	10	

Q	Answer	Marks	Comments
7(a)	$e_{B} = 3a - (a + e_{A}) - a$		
	$e_B = a - e_A$	M1	Finds extension of second spring
	$ke_{\mathcal{A}} = 2k\left(a - e_{\mathcal{A}}\right)$	M1	Uses Hooke's Law to form an equation
	$e_A = 2a - 2e_A$		
	$e_{\mathcal{A}} = \frac{2a}{3}$ [m]	A1	AG Must be convincingly shown
		3	

Q	Answer	Marks	Comments
7(b)(i)	$T_{A} = k \left(x + \frac{2a}{3} \right)$	B1	Correct tension for one spring
	$\left[T_{B} = 2k\left(3a - \left(x + \frac{5a}{3}\right) - a\right)\right]$		
	$T_{B} = 2k \left(\frac{a}{3} - x\right)$	B1	Correct tension in the other spring
	$m\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = 2k\left(\frac{a}{3} - x\right) - k\left(x + \frac{2a}{3}\right)$	M1	Forms correct differential equation
	=-3kx		
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -3\frac{kx}{m}$	A1	Correct simplified differential equation
	SHM as the acceleration is proportional to the displacement and in the opposite direction	B1	Correct explanation
		5	

Q	Answer	Marks	Comments
7(b)(ii)	$\pi = 2\pi \sqrt{\frac{m}{3k}}$	M1	Uses formula for the period with their ω
	$k = \frac{4m}{3}$	A1ft	Correct expression Follow through their ω
		2	

Q	Answer	Marks	Comments
7(b)(iii)	$\omega = 2$	B1	Correct value for ω
	$v^2 = 2^2 \left(\left(\frac{a}{10}\right)^2 - \left(\frac{a}{20}\right)^2 \right)$	M1	Uses SHM speed formula with their ω
	$v = \frac{\sqrt{3} a}{10} \left[\text{m s}^{-1} \right]$	A1ft	Correct speed Follow through their ω
		3	

Q	Answer	Marks	Comments
7(b)(iv)	$x = \frac{a}{10} \cos(2t)$	B1	Correct expression for displacement PI
	$\frac{a}{20} = \frac{a}{10} \cos(2t)$	M1	Forms an equation to find a time PI
	$t=rac{\pi}{6}$	A1	Correct time, PI
	Required time = $2 \times \frac{\pi}{6}$		
	$=\frac{\pi}{3}$ [seconds]	A1	Correct time to move from C to C CSO AWRT 1.05
		4	

|--|

Q	Answer	Marks	Comments
8	Let the angle between OA and the vertical $= \alpha$ Let $r =$ radius		
	At $C \frac{mv^2}{r} = mg\cos 60^\circ$	M1	Resolves radially at C
	$v^2 = \frac{gr}{2}$	A1	Correct velocity at C
	$mgr(\cos\alpha - \cos 60^\circ) = \frac{1}{2}mv^2 = \frac{mgr}{4}$	M1	Energy equation at A
	$\cos\alpha - \frac{1}{2} = \frac{1}{4}$		
	$\cos \alpha = \frac{3}{4}$	A1	Correct value for $\cos \alpha$
	At $A = mg \cos \alpha = \frac{3mg}{4}$	M 1	Reaction force at A
	At $B = \frac{3mg}{8}$	A1	Correct reaction force at B
	$\frac{mv^2}{r} = mg\cos\theta - R$	M1	Resolves radially at <i>B</i>
	$v^2 = gr\left(\cos\theta - \frac{3}{8}\right)$		
	$mgr(\cos\alpha - \cos\theta) = \frac{1}{2}mv^2$	M1	Energy equation
	$\frac{3}{4} - \cos\theta = \frac{\cos\theta}{2} - \frac{3}{16}$	A1	Correct equation
	$\frac{3}{2}\cos\theta = \frac{15}{16}$		
	$\cos\theta = \frac{5}{8}$	A1	Correct value for $\cos\theta$
	1	1	

Question 8 Total 10	Question 8 Tota	10	
---------------------	-----------------	----	--