

INTERNATIONAL QUALIFICATIONS

Please write clearly in	า block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

INTERNATIONAL A-LEVEL MATHEMATICS

(9660/MA03) Unit P2 Pure Mathematics

Friday 12 January 2024 07:00 GMT Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the OxfordAQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
TOTAL		

Answer all questions in the spaces provided.

1	The polynomial	f(x)	is defined by

$$f(x) = 16x^3 + bx^2 + cx + 12$$

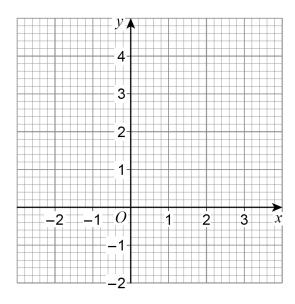
where b and c are constants.

When f(x) is divided by (4x+1) the remainder is 11.5

When f(x) is divided by (2x-1) the remainder is 17.5

Find the value of $\,b\,$ and the value of $\,c\,$

4	m	a	rŀ	(S]
---	---	---	----	----	---


b = ____ c = ___

4

2 (a) On the axes below, draw the graph of

$$y = |2x - 1| - 1$$
 for $-2 \le x \le 3$

[2 marks]

2 (b) Solve the inequality

$$|2x-1|-1 \ge |x|$$

[2 marks]

Answer

4

3	(a)	For each of the following find	$\frac{\mathrm{d}y}{\mathrm{d}x}$

3 (a) (i) $y = e^{-0.5x} \sin 3$	3 <i>x</i>
----------------------------------	------------

[2 marks]

$$\frac{\mathrm{d}y}{\mathrm{d}x} =$$

3	(a) (ii)	$v = \frac{(1-2x)^3}{}$
J	(a) (II)	$3+\tan 5x$

[3 marks]

	_

3 (a) (iii)	$x + \ln(xy) = x^3 + y^2$	[4 marks]
	dv	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = $	
	Question 3 continues on the next page	

Do not write outside the box

3	(b) (i)	Find $\int \frac{x}{4x^2 + 5} dx$	[2 marks]
			[2 marks]
		Answer	

3	(b) (ii)	Find $\int_0^{\frac{\pi}{2}} x \cos x dx$
		Give your answer in an exact form. [4 marks]
		Answer

15

Turn over for the next question

4	(a)	Use the mid-ordinate rule with 5 strips, to find an estimate for	
		$\int_{0}^{0.6} \left(4^{-x} - \frac{1}{4} \right) \mathrm{d}x$	
		Give your answer to four decimal places.	[4 marks]
		Answer	

4	(b)	The function	f	is defined by
---	-----	--------------	---	---------------

$$f(x) = 4^{-x} - \frac{1}{4}$$
 for $x \ge 0$

The inverse of f is f^{-1}

4	(b) (i)	Find	f^{-1}	(x)
---	---------	------	----------	-----

(")		[3 marks]

Answer

4	(b) (ii)	Find the domain of	f^{-1}

[2 marks]

Answer

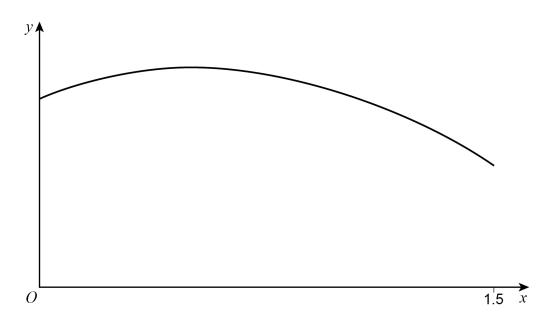
4 (c) Describe the **single** geometrical transformation that maps the graph of y = f(x) onto the graph of $y = f^{-1}(x)$

[1 mark]

10

5	(a) (ı)	Find R and α such that $10\sin\theta - 24\cos\theta = R\sin(\theta - \alpha)$ where $R > 0$ and	
		$0 < \alpha < \frac{\pi}{2}$	
		2	
		Give your value of $ lpha $ in radians to three significant figures.	
		[3 marks]
			_
			_
			_
			_
			_
			_
			_
			-
			_
		Answer	_
_	, , , , , , , , , , , , , , , , , , ,		
5	(a) (ii)	Write down the minimum value of $10\sin\theta - 24\cos\theta$	
		[1 mark	J
			_
		Answer	
			_
5	(a) (iii)	Find the value of $ heta$ in the interval $2\pi < \theta < 4\pi$ at which the minimum value of	
		$10\sin\theta - 24\cos\theta$ occurs.	
		Give your answer to two decimal places.	
		[1 mark]
			_
			_
		Answer	
			-

5	(a) (iv)	Solve the equation	
		$10\sin(x-0.6)-24\cos(x-0.6)=6.5$ for $-\pi < x < \pi$	
		Give all values of x to two decimal places.	[3 marks]
		Answer	
5	(b)	Solve the equation	
		$16 \tan^2 (2y - 10^\circ) - 14 = 4 \sec (2y - 10^\circ)$ for $-90^\circ < y < 90^\circ$	
		Give all values of y to the nearest degree.	[5 marks]
		Anguar	
		Answer	


13

6 The function f is defined by

$$f(x) = -x^2 + \ln(12 + 24x)$$
 for $0 \le x \le 1.5$

The graph of y = f(x) is shown below.

6 (a) Find the range of f

Give your answer in an exact form.	
	[5 marks]

_
_

	Do not write outside the
	box
Answer	
Question 6 continues on the next page	

0	(D)	The graph of $y - 1(x)$ intersects the graph of $y - 2x$ at the point where $x - \alpha$
6	(b) (i)	Show that $ \alpha $ lies between 1.1 and 1.2 [2 marks]
		<u>[=</u>
6	(b) (ii)	Show that the equation $-x^2 + \ln(12 + 24x) = 2x$ can be rearranged into the form
		$x = -1 + \sqrt{1 + \ln(12 + 24x)}$
		$\frac{1}{\sqrt{1+m(12+24x)}}$ [1 mark]
6	(b) (iii)	Use the iterative formula
		$x_{n+1} = -1 + \sqrt{1 + \ln(12 + 24x_n)}$
		with $x_1 = 1.1$ to find the value of x_2 and the value of x_3
		Give your answers to three decimal places.
		[2 marks]
		$r_{\cdot} = r_{\cdot} =$
		$x_2 = \underline{\hspace{1cm}} x_3 = \underline{\hspace{1cm}}$

6	(c) (i)	Describe the single geometrical transformation that maps the graph of $y = -x^2 + \ln(12 + 24x)$ onto the graph of $y = -x^2 + \ln(1 + 2x)$	
		()	[2 marks]
6	(c) (ii)	It is given that	
		$\int_0^{1.5} \left(-x^2 + \ln(12 + 24x) \right) dx = A$	
		where A is a constant.	
		Find, in terms of A , the exact value of $\int_0^{1.5} \left(-x^2 + \ln(1 + 2x)\right) dx$	
			[1 mark]
		Answer	

13

7 (a) The curve C₁ has Cartesian equa	ıtion
---------------------------------------	-------

$$x^2 - y^2 = 6y - 2x + 20$$

Find an equation of the tangent to C_1 at the point (3, -1)

[4 marks]

-		

Answer

7 (b) The curve C_2 has parametric equations

$$x = \frac{1 + \sqrt{17}\cos\theta}{2}$$
 and $y = -1 + \sqrt{17}\sin\theta$ for $0 \le \theta \le 2\pi$

7 **(b) (i)** Find a Cartesian equation of C_2

[2 marks]

Answer

	Find an equation of the normal to C_2 at the point where $\theta = \cos^{-1} \left(\frac{1}{\sqrt{17}} \right)$
	[4 marks]
	Answer
c)	
c)	The tangent found in part (a) intersects the coordinate axes at the points A and B
C)	The tangent found in part (a) intersects the coordinate axes at the points <i>A</i> and <i>B</i> The normal found in part (b)(ii) intersects the coordinate axes at the points <i>P</i> and <i>Q</i>
()	
C)	The normal found in part (b)(ii) intersects the coordinate axes at the points <i>P</i> and <i>Q</i>
. ,	The normal found in part (b)(ii) intersects the coordinate axes at the points <i>P</i> and <i>Q</i> Find the ratio Area of triangle <i>OAB</i> : Area of triangle <i>OPQ</i> where <i>O</i> is the origin of the coordinate axes.
. ,	The normal found in part (b)(ii) intersects the coordinate axes at the points P and Q Find the ratio Area of triangle OAB : Area of triangle OPQ
()	The normal found in part (b)(ii) intersects the coordinate axes at the points <i>P</i> and <i>Q</i> Find the ratio Area of triangle <i>OAB</i> : Area of triangle <i>OPQ</i> where <i>O</i> is the origin of the coordinate axes. [1 mark]
()	The normal found in part (b)(ii) intersects the coordinate axes at the points <i>P</i> and <i>Q</i> Find the ratio Area of triangle <i>OAB</i> : Area of triangle <i>OPQ</i> where <i>O</i> is the origin of the coordinate axes.

8	The region bounded by the curve $y = \frac{1}{10-2x}$, the line $y = 1$ and the y-axis
	from $y = 0.1$ to $y = 1$ is rotated through 2π radians about the y -axis to form a solid.
	Find the volume of the solid generated.
	Give your answer in an exact form. [7 marks]

	Do not write outside the
	box
-	
	_
Answer	7
Turn over for the next question	

9	(a)	The gradient of a curve at the point (x, y) is directly proportional to the sum of 3 times the x -coordinate and 4 times the y -coordinate.	
		Construct a differential equation for the curve.	[2 marks]
		Answer	
۵	(b) (i)	Solve the differential equation	
9	(D) (I)		
		$\frac{dy}{dx} + e^{2y} = 4xe^{2y}$ for $-0.6 < x < 1.1$	
		such that $y = 0$ when $x = 1$	
		Give your answer in the form $y = f(x)$	
			[6 marks]

			Do not write
			outside the box
			
		Answer	
9	(b) (ii)	Find a second value for x when $y = 0$ for the solution $y = f(x)$ found in part (b)(i) .	
		[2 marks]	
			
		Answer	10

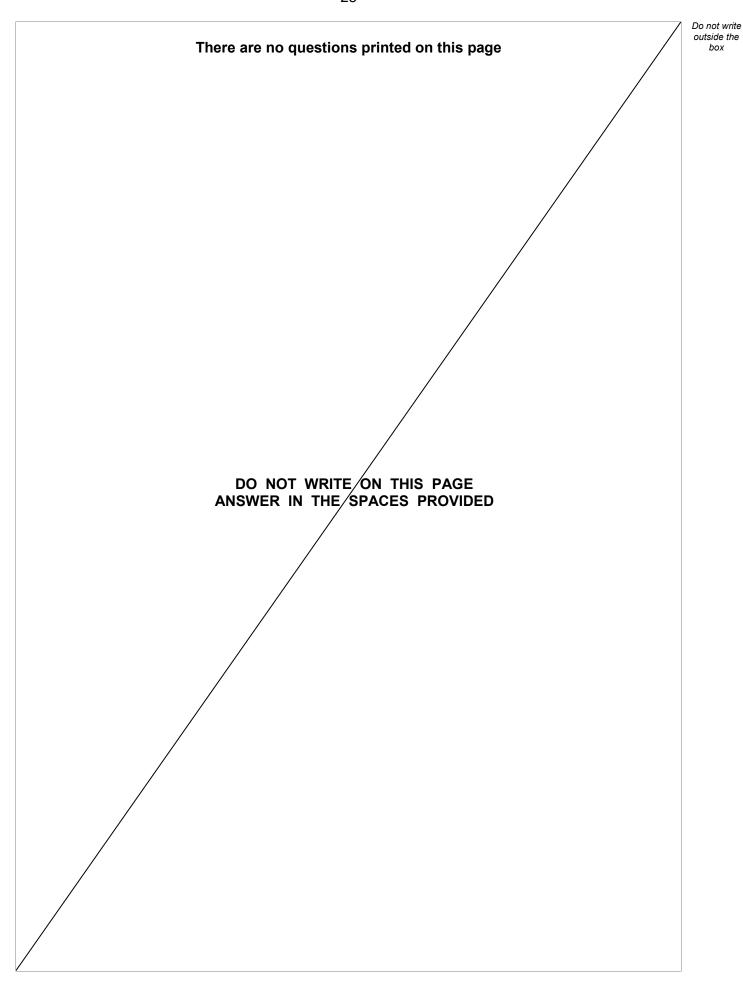
10 (a)	Find the values of A , B and C such that	
	$\frac{x^2}{(3-x)(3+2x)(3-2x)} = \frac{A}{3-x} + \frac{B}{3+2x} + \frac{C}{3-2x}$	[4 marks]
	A = B = C =	
10 (b) (i)	Find the binomial expansion of $\left(3-x\right)^{-1}$ up to and including the term in x^2	[2 marks]
	Answer	

10	(b) (ii)	State the values of x for which the full binomial expansion of $(3-x)^{-1}$ is valid. [1 mark]
		Answer
10	(c)	Use your answers to parts (a) and (b)(i) to show that for small values of x $\frac{x^2}{(3-x)(3+2x)(3-2x)} = Dx^2$
		where D is a rational number. [5 marks]

12

Give your answer in the fo	orm $a+b\sqrt{2}$ where a a	nd b are constants.	I

	Do not write outside the box
	_
	_
	- _
Answer	_
Turn over for the next question	
· · · · · · · · · · · · · · · · · · ·	
Total Control and Alexander	


12	The points A , B and C have coordinates $(4,2,3)$, $(-2,6,15)$ and respectively.	(-1,10,6)
12 (a)	Show that for all values of p , the point $P(-3p-2, 2p+6, 6p+15)$ lies on the line passing through A and B	[4 marks]
12 (b) (i)	Find the value of p for which $C\!P$ is perpendicular to $A\!B$	[4 marks]

	Do not w
	outside box
Answer	
Hence find the area of triangle ABC [4 marks]	
Answer	
Find the angle BAC [2 marks]	
,	
	Hence find the area of triangle ABC [4 marks] Answer Find the angle BAC

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqa.com

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

IB/G/Jan24/MA03

Do not write outside the