OXFORDAQA

INTERNATIONAL QUALIFICATIONS

Please write clearly in	ו block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	
	I declare this is my own work.

INTERNATIONAL AS **MATHEMATICS**

(9660/MA01) Unit P1 Pure Mathematics

Thursday 4 January 2024 07:00 GMT Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the OxfordAQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

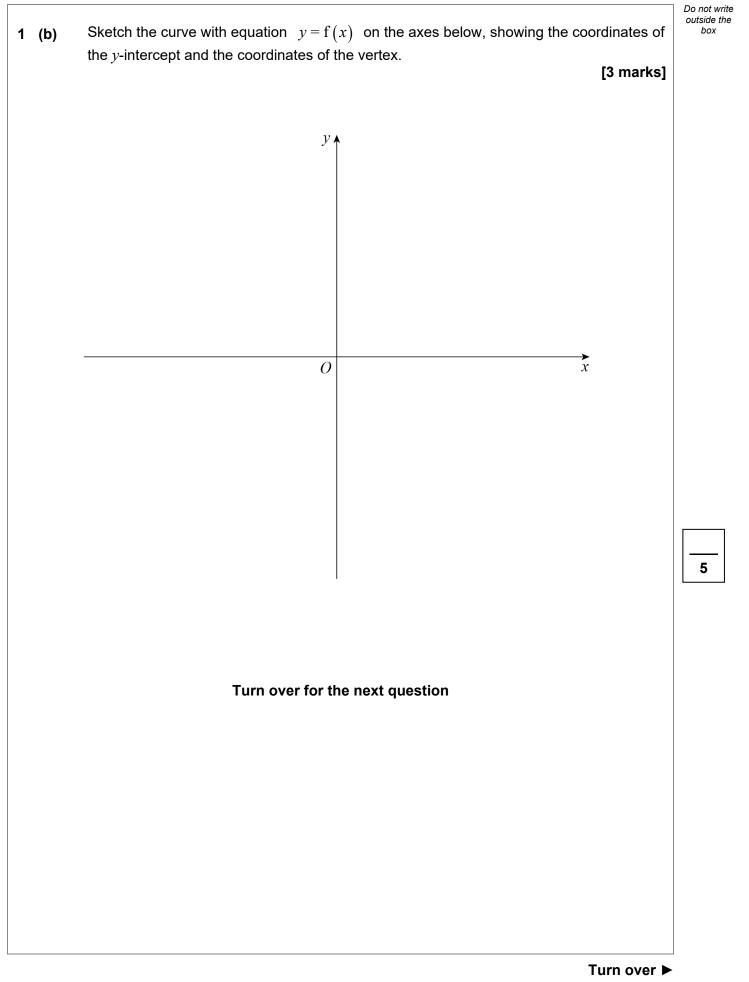
- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

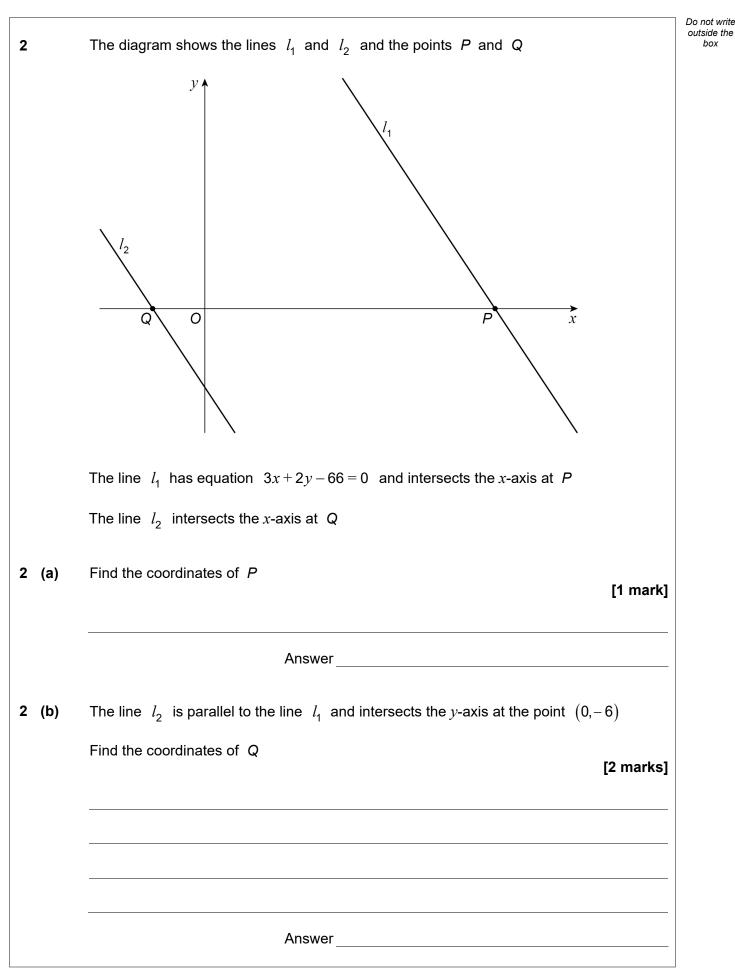
- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.



For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
TOTAL		



Answer all questions in the spaces provided.					Do noi outsia bc
1	The function f is de	fined by			
		f(x) = 2x	$x^{2}-14x+8$		
1 (a)	It is given that $f(x)$ constants.	can be expresse	ed in the form $2(x+a)$	$a)^2 + b$ where a	and <i>b</i> are
1 (a) (i)	Find the value of a				
	Circle your answer.				[1 mark]
	7	$-\frac{7}{2}$	$\frac{7}{2}$	7	
1 (a) (ii)	Find the value of b				
	Circle your answer.				[1 mark]
	-41	$-\frac{33}{2}$	$-\frac{33}{4}$	- <u>17</u> 4	

2	(c)	The point <i>R</i> lies on l_1 such that the line segment <i>QR</i> is perpendicular to l_1	
2	(c) (i)	Find the coordinates of <i>R</i>	[4 marks]
		Answer	
2	(c) (ii)	Find the area of the triangle <i>PQR</i>	[2 marks]
		Answer	

3 (a) The equation of a curve is $y = kx^{\frac{1}{2}} - 12x^{-\frac{3}{2}}$ where x > 0 and k is a constant. The curve passes through the point $\left(2p, \frac{8}{p}\sqrt{2p}\right)$ where *p* is a positive constant. Show that $k = \frac{mp+n}{p^2}$ where *m* and *n* are integers. [3 marks]

3 (b) It is given that

$$10t^2 + 29t - 28 + 2w = w\sqrt{5t} + 2t$$
 for $t \neq 0.8$

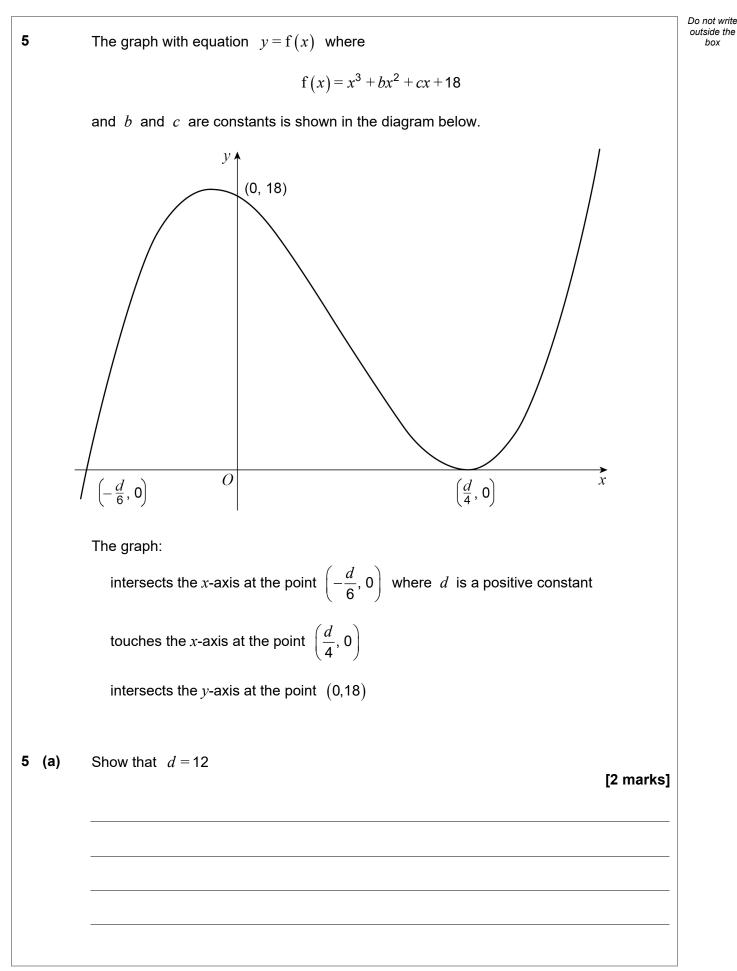
Show that

$$w = (at+b)(\sqrt{ct}+d)$$

where a, b, c and d are integers.

[4 marks]

7



	Do not with
The <i>n</i> th term of a sequence is u_n	Do not wri outside th box
The sequence is defined by	
$u_{n+1} = k - \frac{18}{u_n}$	
The first term $u_1 = 2$	
It is given that $u_3 = 5u_2 - 9$	
Show that one possible value of k is 12 and find the other possible value. [5 mar	·ks]
	—
Answer	
	The sequence is defined by $u_{n+1} = k - \frac{18}{u_n}$ The first term $u_1 = 2$ It is given that $u_3 = 5u_2 - 9$ Show that one possible value of k is 12 and find the other possible value.

4	(b)	In the case when $k = 12$ find the exact value of u_4	Do not write outside the box
		[2 marks]	
		Answer	7
		Turn over for the next question	
		Turn over ►	

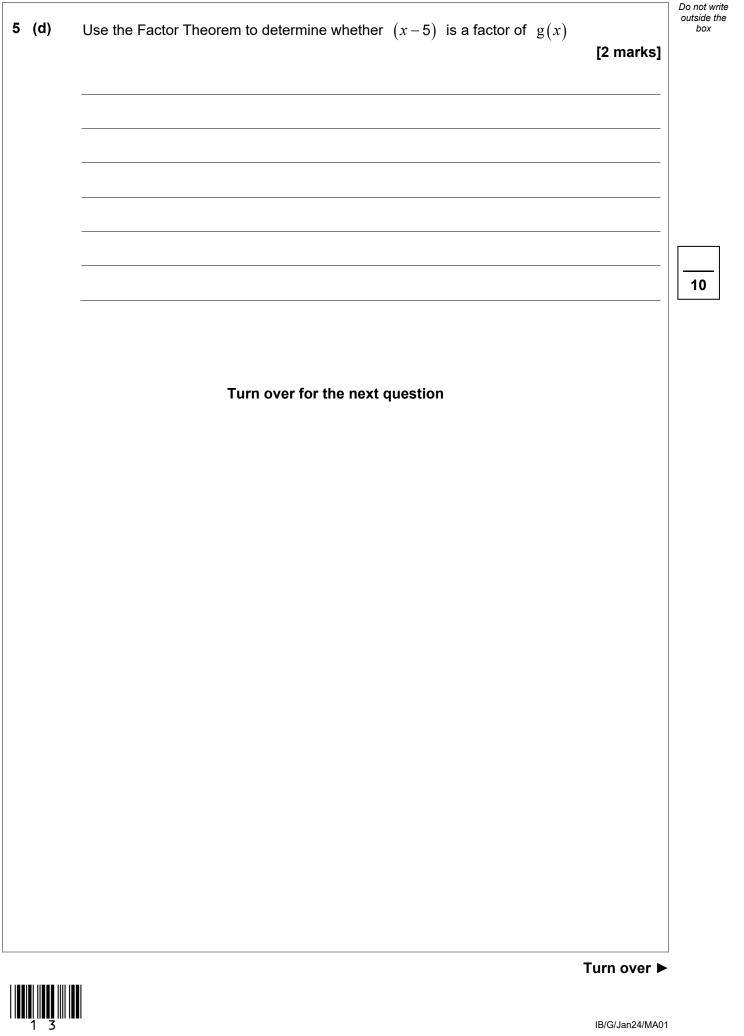
IB/G/Jan24/MA01

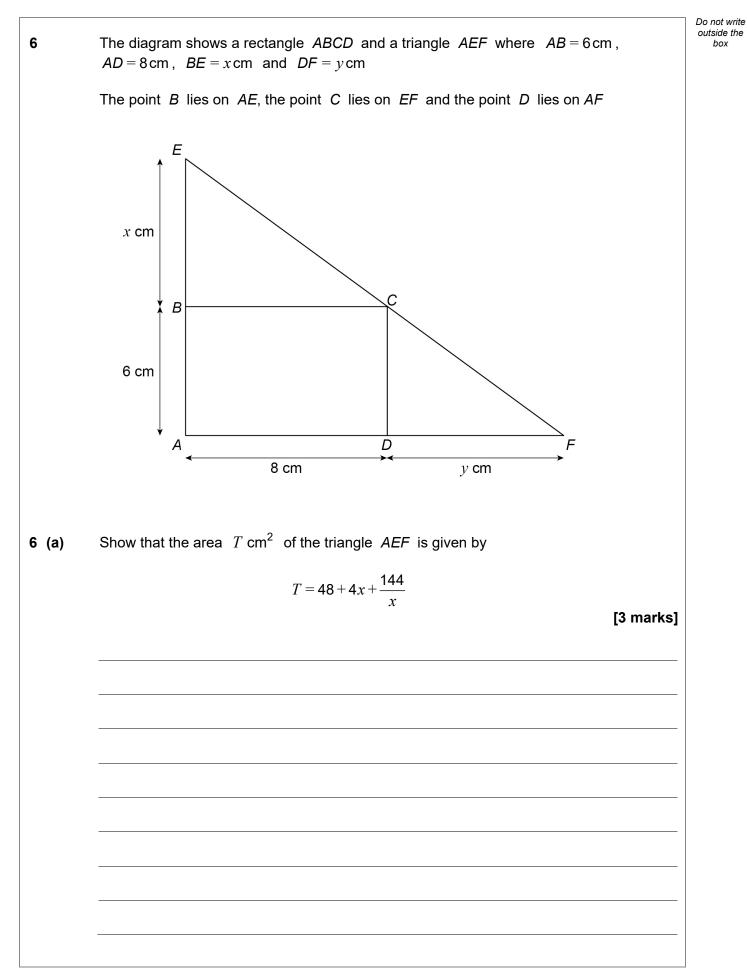
box

5	(b)	By writing $f(x)$	as a product of linear factors prove that
---	-----	-------------------	---

$$f(x) = x^3 - 4x^2 - 3x + 18$$

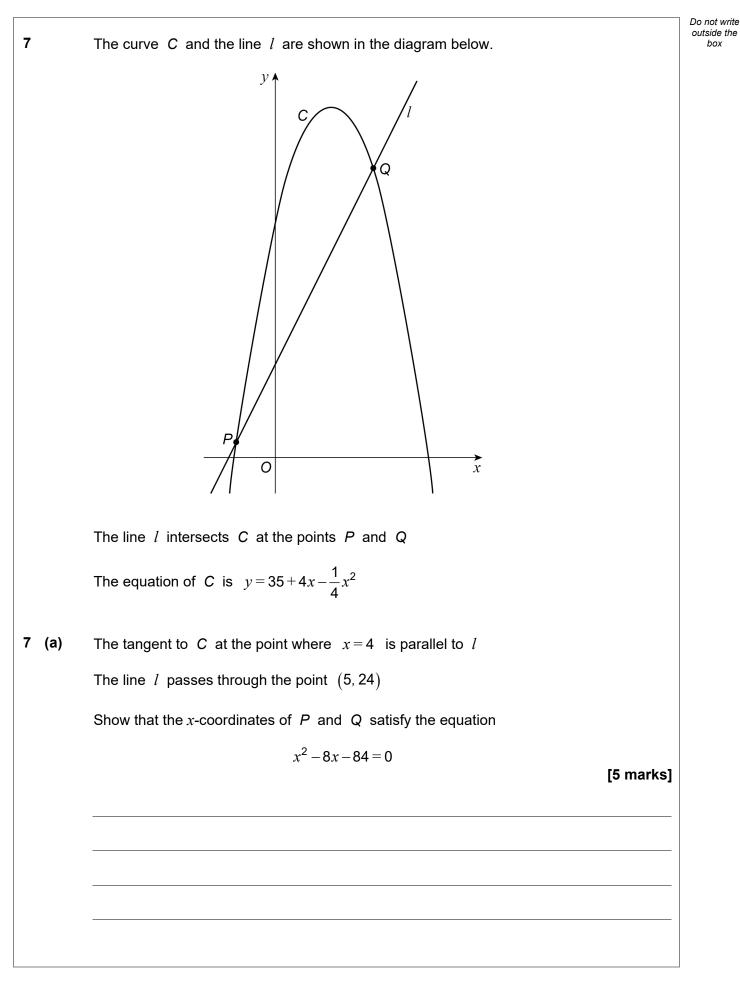
[3 marks]


Question 5 continues on the next page



Turn over ►

5	(c)	The graph with equation $y = x^3 - 4x^2 - 3x + 18$ is mapped onto the graph with
		equation $y = g(x)$ by the translation $\begin{bmatrix} 5\\ -3 \end{bmatrix}$
		Find an expression for $g(x)$
		Give your answer in the form
		$g(x) = x^3 + px^2 + qx + r$
		where p , q and r are non-zero integers. [3 marks]
		g(x) =



6	(b) (i)	Use the result given in part (a) to find the minimum value of T	[4 marks]	Do not write outside the box
			[4 mark5]	
		T =		
		d^2T		
6	(b) (ii)	Use $\frac{d^2T}{dx^2}$ to prove that your value of <i>T</i> is a minimum.		
			[2 marks]	
				9

box

7	(b)	Find the values of x for which the curve C is above the line l	
		[2 marks]
		Answer	
		Question 7 continues on the next page	

Turn over ►

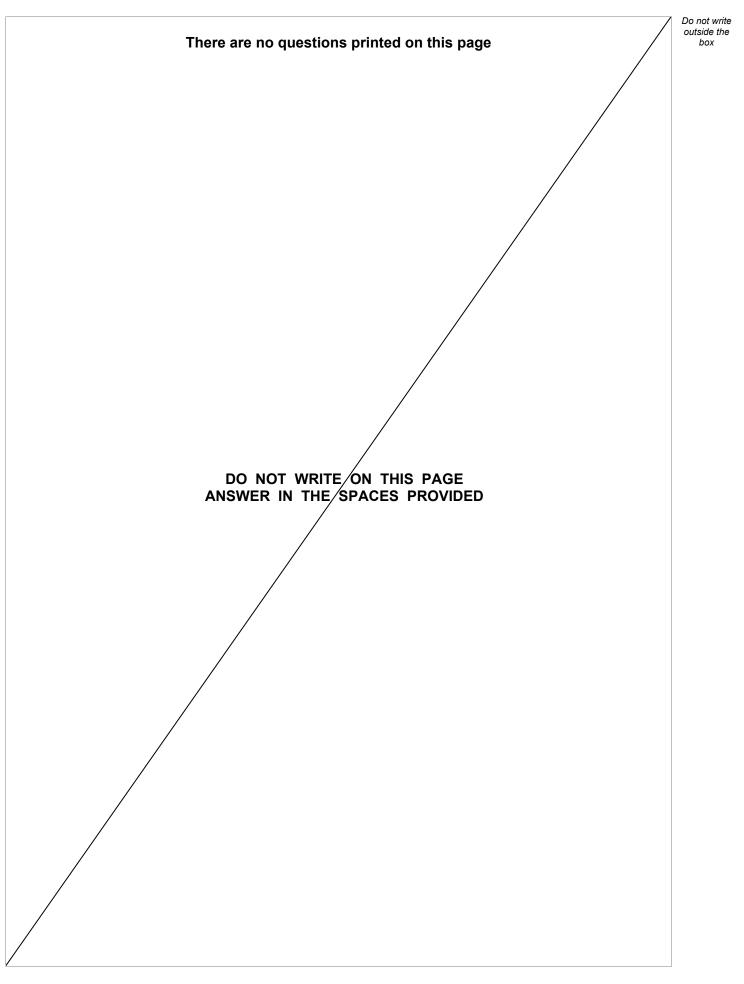
-	(a) (!)	Find $\left(\left(\alpha_{1}, \alpha_{1}, \frac{1}{2}\right)\right)$	Do not write outside the box
1	(C) (I)	Find $\int \left(35 + 4x - \frac{1}{4}x^2\right) dx$ [2 marks]	
		[
		Answer	
7	(c) (ii)	Find the area of the finite region bounded by C and l	
		Show clearly each step of your working.	
		[5 marks]	

	Do not write outside the box
Answer	14
Turn over for the next question	
Turn over ▶	•

8	(a)	Expand $(1-w)^3$			Do not write outside the box
				[1 mark]	
			Answer		
8	(b)	Show that			
			$4\left(1-\sqrt{x}\right)^3+\left(1+\sqrt{x}\right)^3$		
		can be expressed as			
			$5 + a\sqrt{x} + 15x + bx\sqrt{x}$		
		where a and b are intege	ers.	[4 morke]	
				[4 marks]	

IB/G/Jan24/MA01

8	(c)	The curve C is such that any point (x, y) on C satisfies the equation	Do not write outside the box
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 4\left(1 - \sqrt{x}\right)^3 + \left(1 + \sqrt{x}\right)^3$	
		The curve <i>C</i> passes through the point $(4, 20)$	
		Find the equation of C	
		Give your answer in the form $y = f(x)$ [5 marks]	
			10
		Answer	

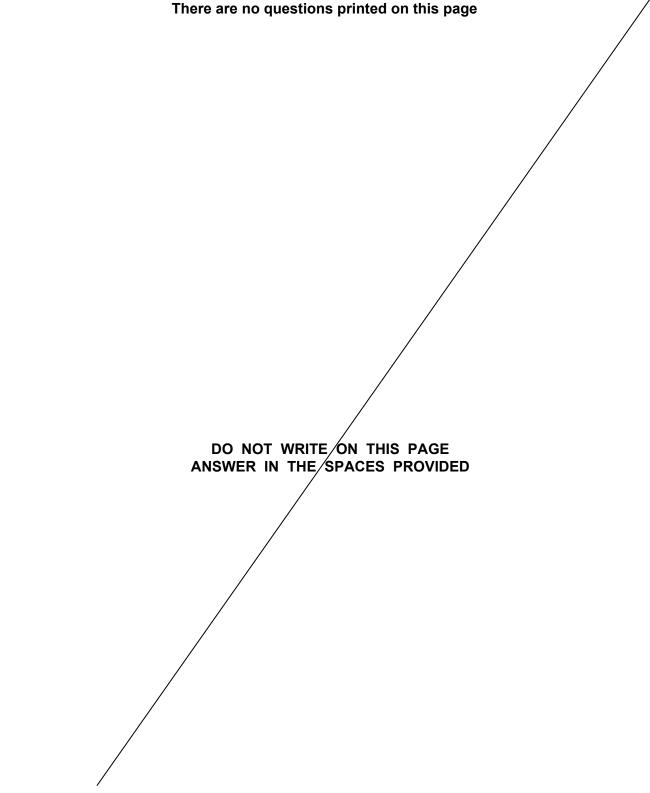


			Do not write
9	(a)	The first three terms of a geometric series are	outside the box
		a, b and c	
		where a, b and c are real numbers.	
		It is given that $b = 27c^2$	
		Find <i>b</i> in terms of <i>a</i>	
		[4 marks]	
		·	
		Answer	

		23
9	(b)	It is given that $k > 3$
		Show that
		$\sum_{n=1}^{\infty} \frac{5 - 4 \times (-3)^{n-1}}{k^n} = \frac{(k+p)}{(k+q)(k+r)}$
		where p , q and r are integers. [5 marks]
		END OF QUESTIONS

Do not write outside the box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.


Do not write outside the box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqa.com

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

 $\label{eq:copyright} @ 2024 \ \mbox{OxfordAQA International Examinations and its licensors. All rights reserved}.$

