OXFORDAQA

INTERNATIONAL QUALIFICATIONS

Please write clearly in	block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS

(9665/FM04) Unit FS2 Statistics

Wednesday 17 January 2024 07:00 GMT Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the OxfordAQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

Answer **all** questions in the spaces provided.

A company produces a games computer called Alpha.

The company releases a new games computer called Beta.

When Alpha computers and Beta computers are in use, the company claims that Beta computers use on average less energy per hour than Alpha computers.

A random sample of 150 Alpha computers is taken and the amount of energy, in kJ, used in 1 hour X_{α} is recorded.

For this sample

1

 $\overline{x}_{\alpha} = 87.5$ and $s_{\alpha} = 36.2$

A random sample of 120 Beta computers is taken and the amount of energy, in kJ, used in 1 hour X_{β} is recorded.

For this sample

$$\overline{x}_{\beta} = 75.9$$
 and $s_{\beta} = 27.4$

Test the company's claim using the 1% level of significance.

[6 marks]

Do not write outside the box 6 Turn over for the next question

2	The discr	ete random var	iable X ha	as probabil	ity distribu	ution Do not outsid bo	Do not write outside the box	
		x	-1	2	5	7		
		P(X=x)	0.1	0.2	0.6	0.1		
	The mom	ent generating	function of	X is M_X	(<i>t</i>)			
2 (a)	Use differ	entiation to find	the value	of $M_X'(0)$			[3 marks]	
			Answ	/er				

2	(b)	Use differentiation to find the value of $M''(0)$	Do not write outside the box
-	(6)	[2 marks]	
		Answer	
2	(c)	Hence find $Var(X)$	
		[2 marks]	
		Answer	7

Turn over ►

The scores	s on a Mather	natics test have	e a normal dist	ribution.	
A random	sample of fou	r students is ta	ken and their s	scores are	
	16	22	30	44	
Construct	a 98% confid	dence interval f	or the populati	on mean test scor	e.
Give your	values to one	decimal place.			
					[4 marks]

			Do not write
4		Chione is studying the lifetime in days of a particular type of moth.	outside the box
		Chione claims that the population standard deviation for the lifetime is 5 days.	
		She takes a random sample of 101 moths. For this sample the standard deviation for the lifetime of the moths is 5.6 days.	
4	(a)	Chione's sample is used to test her claim. The χ^2 distribution is used for the hypothesis test. State a necessary assumption for the hypothesis test. [1 mark]	
4	(b)	Test Chione's claim, using the 5% level of significance. [6 marks]	
]

4	(c)	Chione is also studying the lifetime in days of a particular type of butterfly.
		She takes a random sample of 51 butterflies. For this sample the standard deviation of the lifetime of the butterflies is 5.9 days.
		She claims that the population variance of the lifetime of the butterflies is greater than the population variance of the lifetime of the moths.
		The lifetimes of the butterflies and the moths are independent.
		Test Chione's claim, using the 5% level of significance.
		[6 marks]

Turn over ►

13

Do not write outside the box

Do not write outside the box

The number of errors made each day by the employees of a company can be modelled by a normal distribution.

Each employee participates in a training course designed to reduce the number of errors they make.

The company takes a random sample of seven employees and records the number of errors they each make on a randomly selected day before they have participated in the training course.

The company also records the number of errors the same seven employees each make on a randomly selected day after they have participated in the training course.

	Number	of errors
Employee	Before training	After training
1	12	4
2	21	5
3	8	8
4	7	6
5	9	12
6	10	9
7	13	10

The results are given in the following table.

Using the 5% level of significance, investigate whether the employees make fewer errors in a day after they have participated in the training course.

[9 marks]

	Do not write outside the box
	9

6		Ayegbeni models the mass in kilograms of adult female African bush elephants using a normal distribution with standard deviation 300 kg He takes a random sample of <i>n</i> African bush elephants and uses it to construct a 95% confidence interval of width 58.8 kg for the population mean mass of adult female African bush elephants.	Do not write outside the box
6	(a)	Find the value of <i>n</i> [3 marks]	
6	(b)	Rashida constructs a 99% confidence interval for the population mean mass of adult female African bush elephants using Ayegbeni's data. Find the width of Rashida's confidence interval. Give your answer to three significant figures. [3 marks]	
		Answer	

6 (c)	The sample mean of Ayegbeni's sample is 4450 kg	Do not w outside t box
	Using a 1% level of significance, Rashida conducts a hypothesis test with her	
	confidence interval and the hypotheses	
	$H_0:\mu=4500$	
	$H_1: \mu \neq 4500$	
	State with a reason whether Rashida rejects the null hypothesis. [2 marks]]
		_
		_
		_
		-
		-
		-
		-
		-
		_ L
	Turn over for the next question	

1 3

IB/G/Jan24/FM04

	aten	ber of snacks e	Num				
	2	1	0	Γ			
	1.76	8.8	11.44	Morning	T		
	2.24	11.2	14.56	Afternoon	Time of day		
			test.	otheses for the	State the hypo	a)	(
[1 mark]							
[1 mark]							
[1 mark]							
[1 mark]							
[1 mark]		om for the hypoth	agroos of froade	ne number of d	Evoloin why th	b)	
[1 mark] ual to 1 [2 marks]	esis test is equ	om for the hypoth	egrees of freedo	ne number of d	Explain why th	b)	
[1 mark] ual to 1 [2 marks]	esis test is equ	om for the hypoth	egrees of freedo	ne number of d	Explain why th	b)	
[1 mark] ual to 1 [2 marks]	esis test is equ	om for the hypoth	egrees of freedo	ne number of d	Explain why th	b)	
[1 mark] ual to 1 [2 marks]	esis test is equ	om for the hypoth	egrees of freedo	ne number of d	Explain why th	b)	
[1 mark]	esis test is equ	om for the hypoth	egrees of freedo	ne number of d	Explain why th	b)	
[1 mark]	esis test is equ	om for the hypoth	egrees of freedo	ne number of d	Explain why th	b)	
[1 mark]	esis test is equ	om for the hypoth	egrees of freedo	ne number of d	Explain why th	b)	
[1 mark]	esis test is equ	om for the hypoth	egrees of freedo	e formula used	Explain why the	b) c)	

8		The random variables A , B , X_1 , X_2 , X_3 ,, X_n are independent, unbiased estimators of the mean μ of a population and each have variance σ^2	Do not write outside the box
8	(a)	Show that $R = \frac{1}{n+2} \left(A + B + \sum_{i=1}^{n} X_i \right)$	
		is an unbiased estimator of μ [3 marks]	
8	(b)	Show that R is a consistent estimator of μ [3 marks]	

8 (c) The random variable $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is also an unbiased estimator of μ A student claims that \overline{X} is a more efficient estimator than RBy calculating the relative efficiency, determine whether the student is correct. [4 marks] Turn over for the next question Turn over ►

Do not write outside the

box

		Do not
9	The random variable X has a normal distribution with population mean μ and population variance 10.24	outsid
	A random sample of six observations is taken from X	
	The random sample is used to carry out a hypothesis test at the 2% level of significance with the hypotheses	
	$H_0: \mu = 8$	
	$H_1: \mu \neq 8$	
9 (a)	Find the critical region of the hypothesis test.	
	Give the values in your answer to three decimal places.	
	[3 marks]	
	Answer	

9 (b)	Subsequently μ is found to be 11.4	Do not write outside the box
	Find the power of the hypothesis test.	
	Give your answer to two significant figures. [2 marks]	
	Answer	5
	Turn over for the next question	
	Turn over ►	1

. . .

10 The lifetime *T* billion years of a particular type of star is to be modelled by a normal distribution.

A random sample of 50 stars is taken and the data is shown in the grouped frequency table below.

t	<i>t</i> ≤ 9.25	9.25 < <i>t</i> ≤ 9.5	9.5 < <i>t</i> ≤ 9.75	<i>t</i> > 9.75
Frequency	6	22	13	9

The summary statistics for the data are:

 $\sum t = 475$ and $\sum (t - \overline{t})^2 = 1.96$

Investigate the goodness of fit of the normal distribution to this data using the 1% level of significance.

[11 marks]

Do not write outside the

box

Do not write outside the box

-	
	END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Do not write outside the box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.		
	Copyright information		
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqa.com		
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.		
	Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.		

