OXFORDAQA

INTERNATIONAL QUALIFICATIONS

Please write clearly in	block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	
	I declare this is my own work.

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS

(9665/FM03) Unit FP2 Pure Mathematics

Thursday 11 January 2024 07:00 GMT Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the OxfordAQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

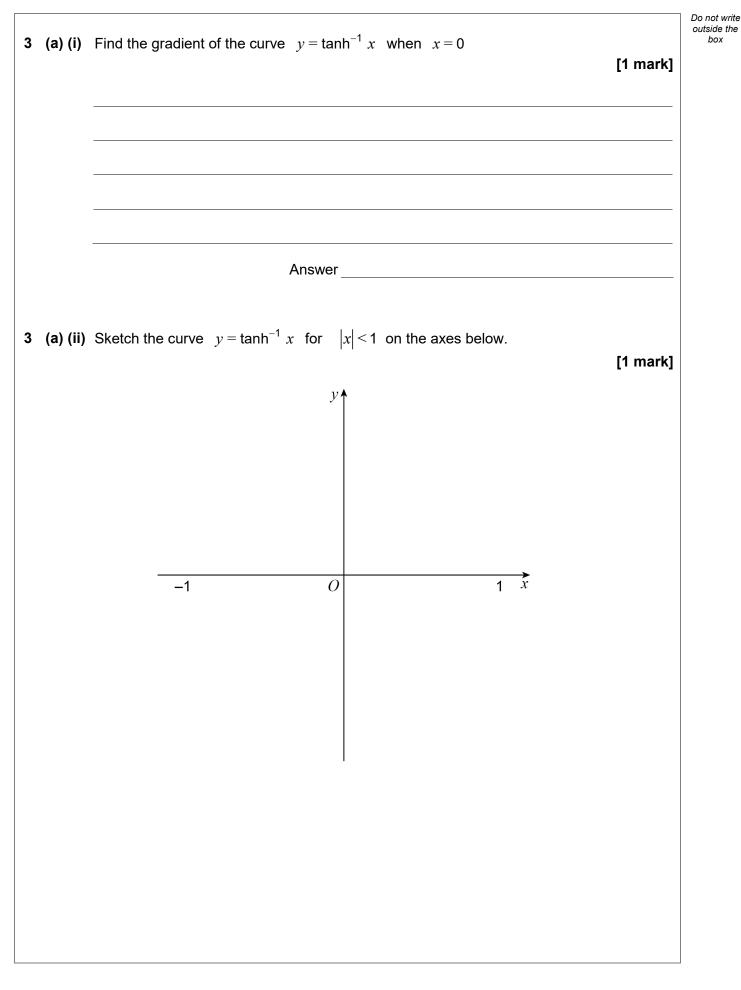
- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.


For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
TOTAL		

	Answer all questions in the spaces provided.	Do not write outside the box
1	The line <i>L</i> has Cartesian equations $\frac{x-1}{2} = \frac{y-4}{5} = \frac{2z-3}{4}$	
	The plane Π has Cartesian equation $x + 2y + 3z = 18$	
	The line L intersects the plane Π at the point A	
	Find the Cartesian coordinates of <i>A</i> [3 marks]	
	·	
	Answer	3

2	(a)	Express the complex number $-2\sqrt{3} + 2i$ in the form $r e^{i\theta}$	Do not write outside the box
		where $r > 0$ and $0 \le \theta < 2\pi$ [2 marks]	
		Answer	
2	(b)	Solve the equation	
		$z^4 = -2\sqrt{3} + 2i$	
		giving your solutions in the form $r e^{i\theta}$ where $r > 0$ and $0 \le \theta < 2\pi$ [4 marks]	
		Answer	6

IB/G/Jan24/FM03

3 (b)	By forming and solving a quadratic equation, find the values of x that satis	fy	Do not write outside the box
. /	$\tanh^{-1}\left(\frac{1+x}{2}\right) + \tanh^{-1}\left(\frac{1-x}{2}\right) = \frac{3}{2}\ln 3 - \frac{1}{2}\ln 2$	-	
		[5 marks]	
	Answer		7

4 By expressing
$$\frac{r^2 + r + 1}{r(r+1)}$$
 in the form $A + \frac{B}{r} + \frac{C}{r+1}$ where A, B and C are integers, use the method of differences to show that

$$\sum_{r=1}^{n} \frac{r^2 + r + 1}{r(r+1)} = 1 + n - \frac{1}{n+1}$$
[6 marks]

5	Find the solution of the differential equation	Do not write outside the box
-	$\cos x \frac{dy}{dx} + y = \cos^2 x + \sin x \text{where} 0 \le x < \frac{\pi}{2}$ given that $y = 1$ when $x = \frac{\pi}{3}$	
	Give your answer in the form $y = f(x)$ [6 marks]	
		6

6	(a)	Find the first three non-zero terms in the Maclaurin series expansion in ascending powers of x of $cos(2x)$
		[1 mark]
		Answer
6	(b)	Hence find the Maclaurin series expansion of $e^{\cos(2x)-1}$ in ascending powers of x up to and including x^4
		[2 marks]
		Answer

7 (a) Explain why
$$\int_{3}^{a} \frac{x-3}{c^{2}} dx$$
 is an improper integral. [1 mark]

	Do not write outside the
	box
Answer	6
Turn over for the next question	
Turn over I	•

IB/G/Jan24/FM03

8 (a	a)	Prove by induction that, for all integers $n \ge 1$	Do no outsi b
		$\sum_{r=1}^{n} (r^{3} + 3r^{5}) = \frac{1}{2}n^{3}(n+1)^{3}$	
		[5 marks]	

8 (b)	Hence show that		Do not write outside the box
	$\sum_{r=1}^{3N} r^5 = \frac{3}{4} N^2 (3N+1)^2 (18N^2+6N-1)$		
	where N is a positive integer.	[3 marks]	
			8

			Do not write
9		The transformation T is represented by the non-singular matrix $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$	outside the box
		$\mathbf{M} = \begin{bmatrix} -1 & 4 & k \\ 2 & 3 & 6 \\ 1 & 3 & -2 \end{bmatrix}$	
		where k is an integer.	
9	(a)	In the case when T has a line of invariant points:	
9	(a) (i)	find the value of k [3 marks]	
		Answer	
9	(a) (ii)	find the Cartesian equations of the line of invariant points. [2 marks]	
		Answer	

9	(b)	Find \mathbf{M}^{-1} in terms of k		Do not write outside the box
			[6 marks]	
		Answer		11

10 (a)	Find the general solution of the differential equation		Do not outsid bo
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2\frac{\mathrm{d}y}{\mathrm{d}x} + y = \sin 4x + 38\cos 4x$		
		[6 marks]	
	Answer		

			Do not write
10 (k))	It is given that $y = f(x)$ is the solution of the differential equation	outside the box
		$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2\frac{\mathrm{d}y}{\mathrm{d}x} + y = \sin 4x + 38\cos 4x$	
		It is also given that the first two non-zero terms in the Maclaurin series expansion in ascending powers of x of $f(x)$ are $4+17x^2$	
		Find the value of $f\left(\frac{\pi}{16}\right)$ giving your answer in a simplified exact form.	
		[4 marks]	
			10
		Answer	

11 The plane II, has equation
$$\mathbf{r} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \lambda \begin{bmatrix} -1 \\ 1 \\ 4 \end{bmatrix} + \mu \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}$$

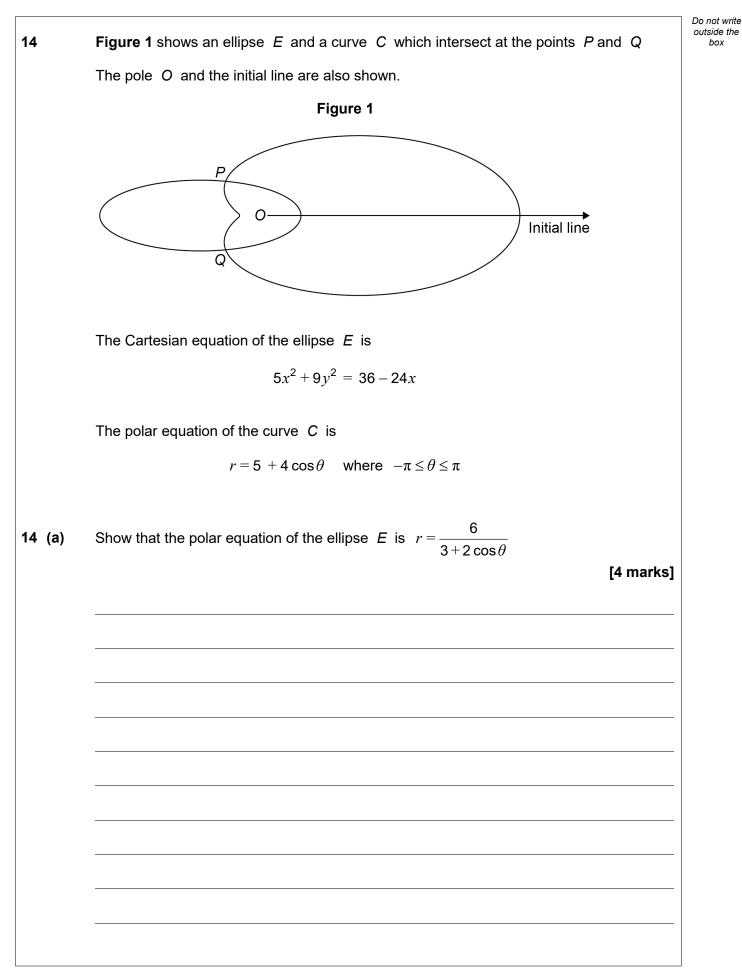
11 (a) Find the sum of the direction cosines of a line perpendicular to the plane II, [5 marks]

11 (b)	The plane Π_2 has equation $\mathbf{r} \cdot \begin{bmatrix} 6 \\ c \\ 2 \end{bmatrix} = 14$ where c is a constant. The line L is the line of intersection of the planes Π_1 and Π_2 The equation of the line L is $\begin{pmatrix} \mathbf{r} - \begin{bmatrix} p \\ q \\ 7 \end{bmatrix} \times \begin{bmatrix} 2 \\ -5 \\ 4 \end{bmatrix} = 0$ where p and q are constants.	Do not write outside the box
	Find the value of <i>c</i> , the value of <i>p</i> and the value of <i>q</i> [6 marks]	
	<i>p</i> = <i>q</i> =	

12 (a)	Use de Moivre's theorem to show that	
	$\cos 5\theta = 16\cos^5\theta + a\cos^3\theta + b\cos\theta$	
	where a and b are integers.	[5 marks]
12 (b)	Hence prove that the quartic equation whose roots are	
	$\cosrac{2\pi}{5},\cosrac{4\pi}{5},\cosrac{6\pi}{5} ext{and}\cosrac{8\pi}{5}$	
	is	
	$16x^4 + 16x^3 + kx^2 + kx + 1 = 0$	
	where k is an integer.	[4 marks]

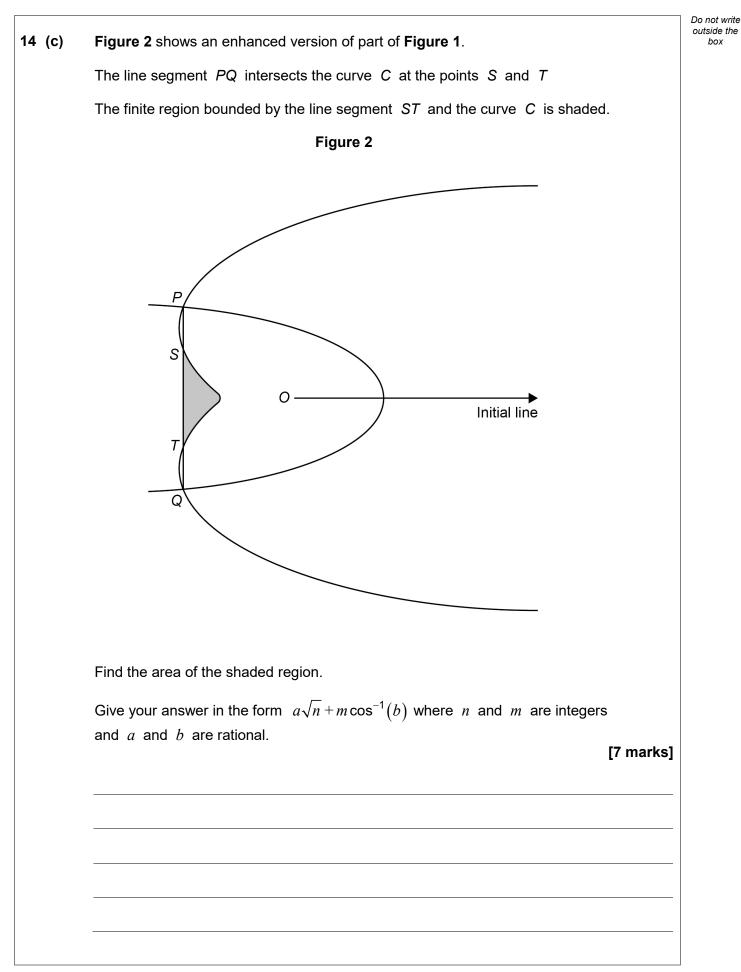
12 (c)	Hence use the equation in part (b) to find the quadratic equation with integer coefficients whose roots are $\cos \frac{2\pi}{5}$ and $\cos \frac{6\pi}{5}$ [4 marks]
	Answer

Turn over ►

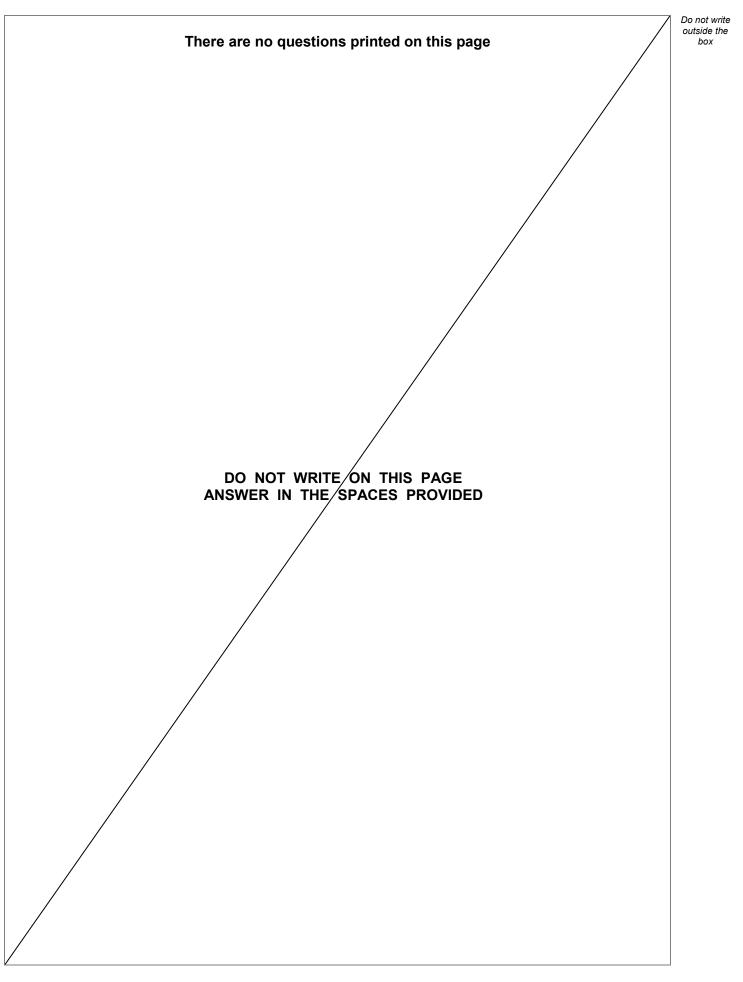


13 (a) (ii)	Hence find the exact value of <i>s</i> giving your answer in terms of e [4 marks] [Do not write outside the box
		Answer	
13 (b)	Find the Cartesian equation of the curve C and state as inequalities the possible values of x and the possible values of y [3 marks]	
		Cartesian equation	
		Values of x	
		Values of <i>y</i>	12
		Turn over ►	

IB/G/Jan24/FM03

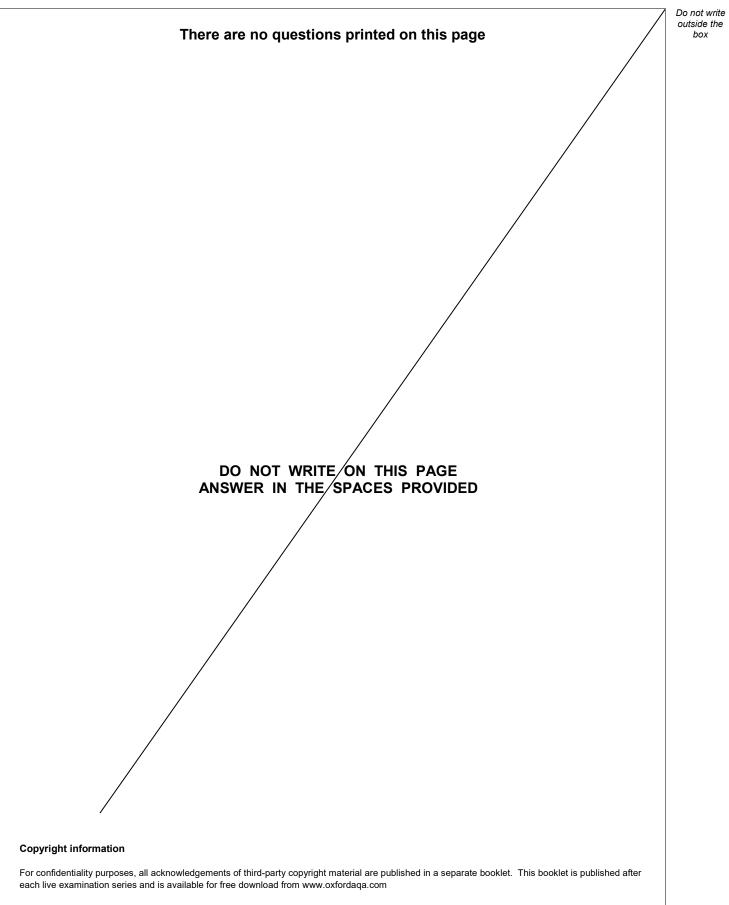

¹²

	<i>—</i>
14 (b)	Show that the area of triangle <i>OPQ</i> is $\frac{9\sqrt{3}}{4}$
	4 [4 marks]
	Question 14 continues on the next page



	Do not write outside the box
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
Answer	15
END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.


Question number	Additional page, if required. Write the question numbers in the left-hand margin.

	Do not write outside the
Iditional page, if required. tion numbers in the left-hand margin.	box

Question	Additional page, if required. Write the question numbers in the left-hand margin.
number	Write the question numbers in the left-hand margin.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

IB/G/Jan24/FM03