# OXFORDAQA

INTERNATIONAL QUALIFICATIONS

| Please write clearly in | ı block capitals.              | - |
|-------------------------|--------------------------------|---|
| Centre number           | Candidate number               |   |
| Surname                 |                                |   |
| Forename(s)             |                                |   |
| Candidate signature     |                                |   |
|                         | I declare this is my own work. |   |

## INTERNATIONAL AS FURTHER MATHEMATICS

(9665/FM01) Unit FP1 Pure Mathematics

### Wednesday 3 January 2024 07:00 GMT Time allowed: 1 hour 30 minutes

#### Materials

- For this paper you must have the OxfordAQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

#### Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

#### Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

#### Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.



| For Examiner's Use |      |  |
|--------------------|------|--|
| Question           | Mark |  |
| 1                  |      |  |
| 2                  |      |  |
| 3                  |      |  |
| 4                  |      |  |
| 5                  |      |  |
| 6                  |      |  |
| 7                  |      |  |
| 8                  |      |  |
| 9                  |      |  |
| 10                 |      |  |
| TOTAL              |      |  |



| Answer <b>all</b> questions in the spaces provided. |          |                                                                      |
|-----------------------------------------------------|----------|----------------------------------------------------------------------|
| 1                                                   | (a) (i)  | It is given that                                                     |
|                                                     |          | w = (a+3i)(2-i)                                                      |
|                                                     |          | where $a$ is a real constant.                                        |
|                                                     |          | Express w in the form $u + iv$ where u and v are real.               |
|                                                     |          | Give your answer in terms of <i>a</i> [2 marks]                      |
|                                                     |          |                                                                      |
|                                                     |          |                                                                      |
|                                                     |          |                                                                      |
|                                                     |          | Answer                                                               |
| 1                                                   | (a) (ii) | Hence, or otherwise, express the complex number                      |
|                                                     |          | $\frac{a+3i}{2+i}$                                                   |
|                                                     |          | in the form $x + iy$ where x and y are real.                         |
|                                                     |          | Give your answer in its simplest form in terms of <i>a</i> [2 marks] |
|                                                     |          |                                                                      |
|                                                     |          |                                                                      |
|                                                     |          |                                                                      |
|                                                     |          | Answer                                                               |
|                                                     |          |                                                                      |



| 1 | (b) | The complex number $z$ satisfies the equation | Do not write<br>outside the<br>box |
|---|-----|-----------------------------------------------|------------------------------------|
|   |     | $3z^* + iz = 23 + 13i$                        |                                    |
|   |     | Find z [5 marks]                              |                                    |
|   |     |                                               |                                    |
|   |     |                                               |                                    |
|   |     |                                               |                                    |
|   |     |                                               |                                    |
|   |     |                                               |                                    |
|   |     |                                               |                                    |
|   |     |                                               |                                    |
|   |     |                                               |                                    |
|   |     |                                               |                                    |
|   |     |                                               |                                    |
|   |     |                                               |                                    |
|   |     |                                               |                                    |
|   |     |                                               |                                    |
|   |     |                                               |                                    |
|   |     |                                               |                                    |
|   |     |                                               |                                    |
|   |     |                                               |                                    |
|   |     |                                               |                                    |
|   |     |                                               | 9                                  |
|   |     |                                               |                                    |
|   |     |                                               |                                    |



| 2 | (a)     | Expand $(1+h)^5$ [1 mark]                                                                                        |
|---|---------|------------------------------------------------------------------------------------------------------------------|
|   |         |                                                                                                                  |
|   |         |                                                                                                                  |
|   |         |                                                                                                                  |
|   |         |                                                                                                                  |
|   |         | Answer                                                                                                           |
| 2 | (b)     | A curve has equation $y = x^5$                                                                                   |
| 2 | (b) (i) | A line passes through two points on the curve, one where $x = 1$<br>and the other where $x = 1 + h$ with $h > 0$ |
|   |         | Find the gradient of this line in the form $a+bh+ch^2+dh^3+h^4$<br>where $a$ , $b$ , $c$ and $d$ are constants.  |
|   |         | [3 marks]                                                                                                        |
|   |         |                                                                                                                  |
|   |         |                                                                                                                  |
|   |         |                                                                                                                  |
|   |         |                                                                                                                  |
|   |         |                                                                                                                  |
|   |         |                                                                                                                  |
|   |         |                                                                                                                  |
|   |         |                                                                                                                  |
|   |         |                                                                                                                  |
|   |         |                                                                                                                  |
|   |         | Angwor                                                                                                           |
|   |         |                                                                                                                  |



Do not write outside the box

| (b) (ii) | Use your answer to <b>part (b)(i)</b> to find the gradient of the curve at the point where showing the limiting process used. [2 | <i>x</i> = 1,<br>? marks] | Do not write<br>outside the<br>box |
|----------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------|
|          |                                                                                                                                  |                           |                                    |
|          |                                                                                                                                  |                           |                                    |
|          |                                                                                                                                  |                           |                                    |
|          | Answer                                                                                                                           |                           | 6                                  |
|          | Turn over for the next question                                                                                                  |                           |                                    |
|          |                                                                                                                                  |                           |                                    |
|          |                                                                                                                                  |                           |                                    |
|          | Tur                                                                                                                              | n over ►                  |                                    |



2

| Find the general solution of the equation                               |                                                                                                                                               |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| $\cos\left(x+\frac{\pi}{4}\right) = \frac{\sqrt{3}}{2}$                 |                                                                                                                                               |
| Give your answer in terms of $\pi$                                      | [3 marks]                                                                                                                                     |
|                                                                         |                                                                                                                                               |
|                                                                         |                                                                                                                                               |
|                                                                         |                                                                                                                                               |
|                                                                         |                                                                                                                                               |
|                                                                         |                                                                                                                                               |
|                                                                         |                                                                                                                                               |
| Answer                                                                  |                                                                                                                                               |
| Find the number of solutions of the equation                            |                                                                                                                                               |
| $\cos\left(x + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2}$               |                                                                                                                                               |
| in the range $-m\pi < x \le m\pi$ where <i>m</i> is a positive integer. |                                                                                                                                               |
| Give your answer in terms of $m$                                        | [2 marks]                                                                                                                                     |
|                                                                         |                                                                                                                                               |
|                                                                         |                                                                                                                                               |
| Answer                                                                  |                                                                                                                                               |
|                                                                         | Find the general solution of the equation<br>$\cos\left(x + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2}$ Give your answer in terms of $\pi$<br> |



| Do not write |
|--------------|
| outside the  |
| box          |

| Give your answer to three decimal places. |          |
|-------------------------------------------|----------|
|                                           | [6 marks |
|                                           |          |
|                                           |          |
|                                           |          |
|                                           |          |
|                                           |          |
|                                           |          |
|                                           |          |
|                                           |          |
|                                           |          |
|                                           |          |
|                                           |          |
|                                           |          |
|                                           |          |
|                                           |          |
|                                           |          |
|                                           |          |
|                                           |          |
|                                           |          |
|                                           |          |
|                                           |          |
|                                           |          |



5 (a) Show that  $\sum_{r=1}^{n} (6r^2 - 4r + 1) = n^2 (an + b)$ where a and b are integers. [4 marks]



Do not write outside the box

| 5 | (b) | Hence show that                                    | Do not write<br>outside the<br>box |
|---|-----|----------------------------------------------------|------------------------------------|
|   |     | $\sum_{r=p+1}^{2p} (6r^2 - 4r + 1) = p^2 (cp + d)$ |                                    |
|   |     | where $c$ and $d$ are integers. [3 marks]          |                                    |
|   |     |                                                    |                                    |
|   |     |                                                    |                                    |
|   |     |                                                    |                                    |
|   |     |                                                    |                                    |
|   |     |                                                    |                                    |
|   |     |                                                    |                                    |
|   |     |                                                    |                                    |
|   |     |                                                    |                                    |
|   |     |                                                    |                                    |
|   |     |                                                    |                                    |
|   |     |                                                    |                                    |
|   |     |                                                    |                                    |
|   |     |                                                    |                                    |
|   |     | Turn over for the next question                    |                                    |
|   |     |                                                    |                                    |
|   |     |                                                    |                                    |
|   |     |                                                    |                                    |
|   |     |                                                    |                                    |



IB/G/Jan24/FM01

| 6          | The complex numbers $\alpha$ and $\beta$ are the roots of the quadratic equation                                          |
|------------|---------------------------------------------------------------------------------------------------------------------------|
|            | $z^2 + bz + c = 0$                                                                                                        |
|            | where $b$ and $c$ are real constants.                                                                                     |
| 6 (a) (i)  | Write down $b$ and $c$ in terms of $\alpha$ and $\beta$ [2 marks]                                                         |
|            |                                                                                                                           |
|            | <i>b</i> = <i>c</i> =                                                                                                     |
| 6 (a) (ii) | It is given that $\alpha = x + iy$ where x and y are real and non-zero.                                                   |
|            | Write down $\beta$ in terms of x and y [1 mark]                                                                           |
|            | Answer                                                                                                                    |
| 6 (b)      | In the case when $b = 6$ , the roots $\alpha$ and $\beta$ are represented by the points $P$ and $Q$ on an Argand diagram. |
|            | The number 8 is represented by the point $R$ on the same Argand diagram.                                                  |
|            | The area of triangle <i>PQR</i> is $11\sqrt{3}$                                                                           |
|            |                                                                                                                           |
| 6 (b) (i)  | Find $\alpha$ and $\beta$ [4 marks]                                                                                       |
|            |                                                                                                                           |
|            |                                                                                                                           |
|            |                                                                                                                           |
|            |                                                                                                                           |
|            |                                                                                                                           |
|            |                                                                                                                           |
|            |                                                                                                                           |
|            |                                                                                                                           |



| - 1 | 1 |
|-----|---|
| - 1 |   |
|     |   |

|   |           |                                                                                                                                 | Do not write<br>outside the<br>box |
|---|-----------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|   |           | Answer and                                                                                                                      |                                    |
| 6 | (b) (ii)  | Hence find the value of c [2 marks]                                                                                             |                                    |
|   |           |                                                                                                                                 |                                    |
|   |           | Answer                                                                                                                          |                                    |
| 6 | (b) (iii) | Express $\alpha$ and $\beta$ in the form $r(\cos\theta + i\sin\theta)$ where $r \ge 0$ and $-\pi < \theta \le \pi$<br>[4 marks] |                                    |
|   |           |                                                                                                                                 |                                    |
|   |           |                                                                                                                                 |                                    |
|   |           |                                                                                                                                 |                                    |
|   |           |                                                                                                                                 |                                    |
|   |           |                                                                                                                                 |                                    |
|   |           | Answer and                                                                                                                      | 13                                 |

Turn over ►







| 7 | (c) | The point (2.2) is a point of intersection of C with the line $v = r$               |            | Do not write<br>outside the<br>box |
|---|-----|-------------------------------------------------------------------------------------|------------|------------------------------------|
| - | (0) | The point $(2, 2)$ is a point of intersection of $\mathbf{C}$ with the line $y = x$ |            |                                    |
|   |     | Find the coordinates of the other point where the line $y = x$ meets C              | [3 marks]  |                                    |
|   |     |                                                                                     |            |                                    |
|   |     |                                                                                     |            |                                    |
|   |     |                                                                                     |            |                                    |
|   |     |                                                                                     |            |                                    |
|   |     |                                                                                     |            |                                    |
|   |     |                                                                                     |            |                                    |
|   |     |                                                                                     |            |                                    |
|   |     |                                                                                     |            |                                    |
|   |     |                                                                                     |            |                                    |
|   |     |                                                                                     |            |                                    |
|   |     |                                                                                     |            |                                    |
|   |     |                                                                                     |            |                                    |
|   |     | Answer                                                                              |            |                                    |
| 7 | (d) | Hence sketch the line $y = x$ on the axes in <b>part (b)</b>                        |            |                                    |
| - | ()  |                                                                                     | [1 mark]   |                                    |
| - | (-) |                                                                                     |            |                                    |
| 1 | (e) | Hence, or otherwise, solve the inequality $\frac{1}{x^2-3} \ge x$                   | [2 marka]  |                                    |
|   |     |                                                                                     | ້ອາມາຍເຮັ້ |                                    |
|   |     |                                                                                     |            |                                    |
|   |     |                                                                                     |            |                                    |
|   |     |                                                                                     |            |                                    |
|   |     |                                                                                     |            |                                    |
|   |     |                                                                                     |            |                                    |
|   |     |                                                                                     |            |                                    |
|   |     |                                                                                     |            |                                    |
|   |     |                                                                                     |            |                                    |



Turn over ►

| 8 |     | The integral $I_n$ is defined by                                                                   | Do not write<br>outside the<br>box |
|---|-----|----------------------------------------------------------------------------------------------------|------------------------------------|
|   |     | $I_n = \int_0^4 x^n  \mathrm{d}x$                                                                  |                                    |
|   |     | where $n$ is a constant.                                                                           |                                    |
| 8 | (a) | Explain why $I_n$ is an improper integral when $n < 0$ [1 mark]                                    |                                    |
| 8 | (b) | Find the exact value of $I_n$ when $n = -\frac{3}{4}$ , showing the limiting process.<br>[3 marks] |                                    |
|   |     |                                                                                                    |                                    |
|   |     |                                                                                                    |                                    |
|   |     |                                                                                                    |                                    |
|   |     |                                                                                                    |                                    |
|   |     |                                                                                                    |                                    |
|   |     |                                                                                                    |                                    |
|   |     |                                                                                                    |                                    |
|   |     | Answer                                                                                             |                                    |



| 8 | (c) | Write down a value of $n$ for which $I_n$ does <b>not</b> have a finite value. | [1 mark]        | Do not write<br>outside the<br>box |
|---|-----|--------------------------------------------------------------------------------|-----------------|------------------------------------|
|   |     |                                                                                |                 |                                    |
|   |     |                                                                                |                 |                                    |
|   |     | n =                                                                            |                 | 5                                  |
|   |     |                                                                                |                 |                                    |
|   |     | Turn over for the next question                                                |                 |                                    |
|   |     |                                                                                |                 |                                    |
|   |     |                                                                                |                 |                                    |
|   |     |                                                                                |                 |                                    |
|   |     |                                                                                |                 |                                    |
|   |     |                                                                                |                 |                                    |
|   |     |                                                                                |                 |                                    |
|   |     |                                                                                |                 |                                    |
|   |     |                                                                                |                 |                                    |
|   |     |                                                                                |                 |                                    |
|   |     | т                                                                              | urn over ►      |                                    |
|   | 1 5 |                                                                                | IB/G/Jan24/FM01 |                                    |

|   |     |                                                                                                                                                                | Do not write       |
|---|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 9 |     | The locus of a point <i>P</i> is such that the distance from <i>P</i> to the point $(4,0)$ is twice the distance from <i>P</i> to the line with equation $x=1$ | outside the<br>box |
|   |     | The locus of $P$ is the curve $C_1$                                                                                                                            |                    |
| 9 | (a) | Show that the equation of $C_1$ is                                                                                                                             |                    |
|   |     | $\frac{x^2}{m} - \frac{y^2}{n} = 1$                                                                                                                            |                    |
|   |     | where <i>m</i> and <i>n</i> are constants. [4 marks]                                                                                                           |                    |
|   |     |                                                                                                                                                                |                    |
|   |     |                                                                                                                                                                |                    |
|   |     |                                                                                                                                                                |                    |
|   |     |                                                                                                                                                                |                    |
|   |     |                                                                                                                                                                |                    |
|   |     |                                                                                                                                                                |                    |
|   |     |                                                                                                                                                                |                    |
| ٩ | (b) | Write down the equations of the asymptotes of                                                                                                                  |                    |
| J | (6) | while down the equations of the asymptotes of $O_1$                                                                                                            |                    |
|   |     | Give your answers in the form $y = f(x)$                                                                                                                       |                    |
|   |     | [2 marks]                                                                                                                                                      |                    |
|   |     |                                                                                                                                                                |                    |
|   |     | Answer                                                                                                                                                         |                    |







| The quadratic equation $2x^2 + x + m = 0$ has roots $\alpha$ and $\beta$                   |           |
|--------------------------------------------------------------------------------------------|-----------|
| The quadratic equation $3x^2 + nx + m = 0$ has roots $\alpha^2 \beta$ and $\beta^2 \alpha$ |           |
| The constants $m$ and $n$ are both positive.                                               |           |
| Find the exact value of <i>m</i>                                                           | [3 marks] |
|                                                                                            |           |
|                                                                                            |           |
|                                                                                            |           |
|                                                                                            |           |
|                                                                                            |           |
|                                                                                            |           |
|                                                                                            |           |
|                                                                                            |           |
|                                                                                            |           |
|                                                                                            |           |
|                                                                                            |           |
|                                                                                            |           |
| Answer                                                                                     |           |
|                                                                                            |           |
|                                                                                            |           |



| 10 (b) | Find the exact value of <i>n</i> [4 marks] | outside the<br>box |
|--------|--------------------------------------------|--------------------|
|        |                                            |                    |
|        |                                            |                    |
|        |                                            |                    |
|        |                                            |                    |
|        |                                            |                    |
|        |                                            |                    |
|        |                                            |                    |
|        |                                            |                    |
|        |                                            |                    |
|        |                                            |                    |
|        |                                            |                    |
|        |                                            |                    |
|        |                                            |                    |
|        |                                            |                    |
|        |                                            |                    |
|        |                                            |                    |
|        |                                            |                    |
|        |                                            |                    |
|        |                                            |                    |
|        | Answer                                     | 7                  |
|        | END OF QUESTIONS                           |                    |



Do not write





|         | Do not write<br>outside the |
|---------|-----------------------------|
| margin. | box                         |
|         |                             |
|         |                             |
|         |                             |

|    | box |
|----|-----|
| ۱. |     |
|    |     |
|    |     |
|    |     |
|    |     |
|    |     |
|    |     |
|    |     |
|    |     |
|    |     |
|    |     |
|    |     |
|    |     |
|    |     |

| Question<br>number | Additional page, if required.<br>Write the question numbers in the left-hand margin. |
|--------------------|--------------------------------------------------------------------------------------|
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |



| Question<br>number | Additional page, if required.<br>Write the question numbers in the left-hand margin. |
|--------------------|--------------------------------------------------------------------------------------|
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |



| Question<br>number | Additional page, if required.<br>Write the question numbers in the left-hand margin. |
|--------------------|--------------------------------------------------------------------------------------|
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |





Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.





IB/G/Jan24/FM01