

INTERNATIONAL QUALIFICATIONS

INTERNATIONAL A-LEVEL MATHEMATICS

MA03

(9660/MA03) Unit P2 Pure Mathematics

Mark scheme

January 2024

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaqa.com

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

М	Mark is for method
m	Mark is dependent on one or more M marks and is for method
Α	Mark is dependent on M or m marks and is for accuracy
В	Mark is independent of M or m marks and is for method and accuracy
E	Mark is for explanation
\checkmark or ft	Follow through from previous incorrect result
CAO	Correct answer only
CSO	Correct solution only
AWFW	Anything which falls within
AWRT	Anything which rounds to
ACF	Any correct form
AG	Answer given
SC	Special case
oe	Or equivalent
A2, 1	2 or 1 (or 0) accuracy marks
<i>–x</i> EE	Deduct <i>x</i> marks for each error
NMS	No method shown
PI	Possibly implied
SCA	Substantially correct approach
sf	Significant figure(s)
dp	Decimal place(s)
ISW	Ignore subsequent working

Q	Answer	Marks	Comments
1	$16((-0.25)^{3})+b((-0.25)^{2})+c(-0.25)+12=11.5$ $16((0.5)^{3})+b((0.5)^{2})+c(0.5)+12=17.5$	M1 A1	M1: At least one equation correct or use of long division A1: Both equations correct
	b-4c = -4 $b+2c = 14$		
	b = 8 c = 3	m1 A1	m1: Attempt to solve PIA1: Both values correct ACF

Question 1 Tot	4	
----------------	---	--

Q	Answer	Marks	Comments
Q 2(a)	Answer y 4 4 3 2 1 -2 $-101232112321123212332112332112332112332112332112332112332112332112332112333321233333333$	Marks B1 B1	CommentsCorrect for $-2 \le x \le 0.5$ Correct for $0.5 \le x \le 3$
	-2	2	

Q	Answer	Marks	Comments
2(b)	$x \le 0$ $x \ge 2$	M1	Either correct, condone strict inequalities
		A1	Both correct and no extras
		2	

Question 2 Total	4	
------------------	---	--

Q	Answer	Marks	Comments
3(a)(i)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = a \mathrm{e}^{-0.5x} \mathrm{sin}3x + b \mathrm{e}^{-0.5x} \mathrm{cos}3x$	M1	Use of product rule
	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = 0.5\mathrm{e}^{-0.5x}\mathrm{sin}3x + 3\mathrm{e}^{-0.5x}\mathrm{cos}3x$	A1	ISW
		2	

Q	Answer	Marks	Comments
3(a)(ii)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = \frac{a(3+\tan 5x) \times (1-2x)^2 - (1-2x)^3 b \sec^2 5x}{(3+\tan 5x)^2}$	M1 A1	M1: Correct use of quotient/product rule A1: one numerator term and denom correct
	$\left[\frac{dy}{dx}\right] = \frac{-6(3 + \tan 5x) \times (1 - 2x)^2 - (1 - 2x)^3 5 \sec^2 5x}{(3 + \tan 5x)^2}$	A1	ACF All correct (unsimplified) ISW
		3	

Q	Answer	Marks	Comments
3(a)(iii)	$1 + \frac{1}{xy} \left(x \frac{dy}{dx} + y \right) = 3x^2 + 2y \frac{dy}{dx}$	M1 A1	M1: One correct use of implicit differentiation A1: All correct
	$\frac{\mathrm{d}y}{\mathrm{d}x}\left(\frac{1}{y} - 2y\right) = 3x^2 - 1 - \frac{1}{x}$	m1	Attempt to isolate $\frac{dy}{dx}$
	$\frac{dy}{dx} = \frac{3x^2 - 1 - \frac{1}{x}}{\frac{1}{y} - 2y} \text{or} \frac{dy}{dx} = \frac{y(3x^3 - x - 1)}{x(1 - 2y^2)}$	A1	ACF, ISW
		4	

Q	Answer	Marks	Comments
3(b)(i)	$\left[\int \frac{x}{4x^2+5} \mathrm{d}x = \right] a \ln(4x^2+5)$	M1	
	$\left[\int \frac{x}{4x^2 + 5} dx = \right] \frac{1}{8} \ln(4x^2 + 5) [+c]$	A1	ISW
		2	

Q	Answer	Marks	Comments
3(b)(ii)	$u = x dv = \cos x$ $du = 1 v = \sin x$	M1	PI
	$\int x \cos x \mathrm{d}x = \int x \sin x - \int \sin x \mathrm{d}x$	m1	Correct use of integration by parts formula
	$= x \sin x + \cos x$	A1	All correct
	$\left[x\sin x + \cos x\right]_{0}^{\frac{\pi}{2}}$		
	$\left[\int_{0}^{\frac{\pi}{2}} x\cos x \mathrm{d}x\right] = \frac{\pi}{2} - 1$	A1	ACF, ISW
		4	

Question 3 Total 15

Q		Answer	Marks	Comments
4(a)	x 0.06	$\frac{y}{4^{-0.06} - 0.25} = 0.670187$	B1	All 5 correct <i>x</i> values (and no extra used) PI by 5 correct <i>y</i> values
	0.18 0.30 0.42 0.54	$4^{-0.18} - 0.25 = 0.529165$ $4^{-0.30} - 0.25 = 0.409754$ $4^{-0.42} - 0.25 = 0.308644$ $4^{-0.54} - 0.25 = 0.223029$	М1	At least 3 correct <i>y</i> values in exact form or decimals, rounded or truncated to 3 dp or better (in table or formula) PI by AWRT correct answer
	0.12(0.67.	+0.53+0.41+0.31+0.22)	m1	Correct sub into formula with $h = 0.12$ oe and at least 3 correct <i>y</i> values either listed, with + signs, or totalled PI by AWRT correct answer
	= 0.2569		A1	CAO Must see this value exactly and no error seen
			4	

Q	Answer	Marks	Comments
4(b)(i)	$x = 4^{-y} - 0.25$	M1	Interchange x and y
	$-y\ln 4 = \ln(x+0.25)$	M1	Attempt to isolate PI
	$f^{-1}(x) = \frac{\ln(x+0.25)}{-\ln 4}$ or $\frac{\ln(x+0.25)}{\ln 0.25}$	A1	ACF eg $-\log_4(x+0.25)$
		3	

Q	Answer	Marks	Comments
4(b)(ii)	$-0.25 < x \le 0.75$ or $x \in (-0.25, 0.75]$	B2	If B2 not awarded, award B1 for at least one of the two limits correct or $-0.25 \le x < 0.75$
		2	

4(c)Reflection [in the line] $y = x$ B1	Q	Answer	Marks	Comments
	4(c)	Reflection [in the line] $y = x$	B1	
1			1	

Question 4 Total 10

Q	Answer	Marks	Comments
5(a)(i)	$[10\sin\theta - 24\cos\theta =]$ $R\sin\theta\cos\alpha - R\cos\theta\sin\alpha$	M1	Ы
	<i>R</i> = 26	B1	
	<i>α</i> = 1.18	A1	
	$26\sin(heta-1.18)$		
		3	

Q	Answer	Marks	Comments
5(a)(ii)	[Min value =] –26	B1ft	
		1	

Q	Answer	Marks	Comments
5(a)(iii)	12.17	B1	Condone 12.18
		1	

Q	Answer	Marks	Comments
5(a)(iv)	$[26\sin((x-1.18)-0.6) = 6.5]$ $\sin(x-1.78) = 0.25$ [x-1.78 =] 0.253	M1	Attempt to solve $sin((x-their 1.18) - 0.6) = \frac{6.5}{their 26}$
	x = -1.62, 2.03	A1, A1	Condone –1.61
		3	

Q	Answer	Marks	Comments
5(b)	Let $Y = 2y - 10^{\circ}$		oe
	$16\tan^2 Y - 14 = 4\sec Y$ $16(\sec^2 Y - 1) = 4\sec Y + 14$	M1	Correct use of trig identity
	$8\sec^2 Y - 2\sec Y - 15 = 0$ $\sec Y = -1.25, 1.5$	m1	Attempt to solve <i>their</i> quadratic
	$Y = 143.1^{\circ}$ and 48.2°	A1	РІ
	y = -67°, -19°, 29°, 77°	B2,1	AWRT the correct values Award B1 for 3 correct answers
		5	

Question 5 To	al 13	
---------------	-------	--

Q	Answer	Marks	Comments
6(a)	$f(x) = -x^{2} + \ln(12 + 24x) \qquad \frac{dy}{dx} = -2x + \frac{24}{12 + 24x}$	M1	
	$\left[\frac{dy}{dx} = 0\right] 2x = \frac{24}{12 + 24x} 48x^2 + 24x - 24 = 0$	m1	Attempt to solve $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
	x = 0.5 [, -1 : reject]	A1	
	$\left[x=0.5, y=-\frac{1}{4}+\ln 24\right]$		
	$x = 1.5, y = -\frac{9}{4} + \ln 48$	B1	PI by 1.62 AWRT
	$-\frac{9}{4}$ + ln48 \leq f(x) \leq $-\frac{1}{4}$ + ln24	A1	Must be in an exact form
		5	

Q	Answer	Marks	Comments
6(b)(i)	$g(x) = -x^{2} + \ln(12 + 24x) - 2x$ g(1.1) = 0.24 g(1.2) = -0.13	M1	or reverse Both values rounded or truncated to at least 1sf
	Change of sign, $1.1 < \alpha < 1.2$	A1	Must have both statement and interval in words or symbols or comparing 2 sides: f(1.1) = 2.44 > 2.2 f(1.2) = 2.27 < 2.4 (M1) Conclusion as before (A1)
		2	

Q	Answer	Marks	Comments
6(b)(ii)	$ln(12+24x) = x^{2}+2x 1+ln(12+24x) = x^{2}+2x+1$ $(x+1)^{2} = 1+ln(12+24x)$ $x = -1+\sqrt{1+ln(12+24x)}$	B1	AG No errors seen including correct use of brackets Must be convincingly shown
		1	

Q	Answer	Marks	Comments
6(b)(iii)	$x_2 = 1.156$ $x_3 = 1.164$	B1, B1	If 0 scored, SC1 for AWRT 1.156 and 1,164
		2	

Q	Answer	Marks	Comments
6(c)(i)	Translation	B1	
	$\begin{bmatrix} 0 \\ -\ln 12 \end{bmatrix} \text{or} \begin{bmatrix} 0 \\ \ln \frac{1}{12} \end{bmatrix}$	B1	Allow $\begin{bmatrix} 0\\ -2.48 \end{bmatrix}$ AWRT -2.48
		2	

Q	Answer	Marks	Comments
6(c)(ii)	A-1.5In12	B1ft	oe
		1	

Question 6 Total	13	
------------------	----	--

Q	Answer	Marks	Comments
7(a)	$2x - 2y \frac{dy}{dx} = 6 \frac{dy}{dx} - 2$	M1	LHS or RHS correct
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x+2}{2y+6}$	A1	
	OR		
	$y = -3 \pm ((x+1)^2 - 12)^{10}$		
	$\frac{dy}{dx} = k \left((x+1)^2 - 12 \right)^{-0.5} (x+1)$	(M1)	
	$y = -3 \pm ((x+1)^{2} - 12)^{0.5}$ $\frac{dy}{dx} = k ((x+1)^{2} - 12)^{-0.5} (x+1)$ $\frac{dy}{dx} = \frac{x+1}{((x+1)^{2} - 12)^{0.5}}$ At (3,-1) $\frac{dy}{dx} = 2$	(A1)	
	At (3,-1) $\frac{dy}{dx} = 2$	m1	Attempt to find gradient at (3, −1) PI by further work
	y+1=2(x-3) or $y=2x-7$	A1	ACF
		4	

Q	Answer	Marks	Comments
7(b)(i)	$x = \frac{1 + \sqrt{17}\cos\theta}{2}, \cos\theta = \frac{2x - 1}{\sqrt{17}}$ $y = -1 + \sqrt{17}\sin\theta, \sin\theta = \frac{y + 1}{\sqrt{17}}$	М1	Rearranges for $k\cos\theta$ and $k\sin\theta$
	$\cos^2\theta + \sin^2\theta = 1$		
	$(2x-1)^2 + (y+1)^2 = 17$	A1	ACF, eg $\left(\frac{2x-1}{\sqrt{17}}\right)^2 + \left(\frac{y+1}{\sqrt{17}}\right)^2 = 1$ $4x^2 - 4x + y^2 + 2y = 15$
		2	

Q	Answer	Marks	Comments
7(b)(ii)	$4(2x-1)+2(y+1)\frac{dy}{dx}=0$	M1	Attempt at implicit differentiation
	$4(2x-1) + 2(y+1)\frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{4-8x}{2y+2}$	A1	All correct
	OR		
	$\frac{dy}{d\theta} = \sqrt{17}\cos\theta, \qquad \frac{dx}{d\theta} = \frac{-\sqrt{17}\sin\theta}{2}$ $\frac{dy}{dx} = -2\cot\theta$	(M1)	Attempt at parametric differentiation
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\cot\theta$	(A1)	All correct
	$\theta = \cos^{-1}\left(\frac{1}{\sqrt{17}}\right), x = 1, \ y = 3 \ \frac{dy}{dx} = -0.5$	m1	
	y-3=2(x-1) or $y=2x+1$	A1	ACF
		4	

Q	Answer	Marks	Comments
7(c)	49:1	B1ft	ft their answers for part (a) and part (b)(ii) only if both equations have a gradient of 2
		1	

Question 7 Total	11
------------------	----

Q	Answer	Marks	Comments
8	$y = \frac{1}{10 - 2x} \qquad 10 - 2x = \frac{1}{y}$ $x = 5 - \frac{1}{2y}$ $\left[x^2 = 25 - \frac{5}{y} + \frac{1}{4y^2} \right]$	M1 A1	Isolating 'x' Correct
	$\left[\text{Volume} = \right] \pi \int_{0.1}^{1} \left(25 - \frac{5}{y} + \frac{1}{4y^2} \right) dy$	B1ft	PI by later work
	$\int_{0.1}^{1} \left(25 - \frac{5}{y} + \frac{1}{4y^2} \right) dy = 25y - 5\ln y - \frac{1}{4y}$	M1 A1	At least 2 terms integrated correctly All terms integrated correctly
	$\left[25y - 5\ln y - \frac{1}{4y}\right]_{0.1}^{1} = (25 - 0.25)$ $-(2.5 - 5\ln 0.1 - 2.5)$ $= 24.75 + 5\ln 0.1$	М1	Correctly substituting limits into their integration must be in form $py - q \ln y - \frac{r}{y}$
	$[Volume=] (24.75 - 5ln10)\pi$	A1	ACF

|--|

Q	Answer	Marks	Comments
9(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = k\left(3x + 4y\right)$	M1	$\frac{\mathrm{d}y}{\mathrm{d}x} = (3x+4y)$ or $\frac{\mathrm{d}y}{\mathrm{d}x} \propto (3x+4y)$
	dx	A1	All correct
		2	

Q	Answer	Marks	Comments
9(b)(i)	$\frac{dy}{dx} = 4xe^{2y} - e^{2y} = e^{2y}(4x - 1)$		
	$\frac{dy}{dx} = 4xe^{2y} - e^{2y} = e^{2y}(4x - 1)$ $\int e^{-2y} dy = \int 4x - 1 dx$	M1	Separate variables
	$-\frac{1}{2}e^{-2y} = 2x^2 - x + c$	m1	Attempt to integrate eg $ae^{\pm 2y} = 2x^2 + kx$ oe
	(1,0) $-\frac{1}{2} = 1 + c$ c = -1.5	m1 A1	Attempt to find c from equation as above
	$\left[-\frac{1}{2}e^{-2y} = 2x^2 - x - 1.5\right]$		
	$\left[e^{-2y}=-4x^2+2x+3\right]$		
	$y = -\frac{1}{2}\ln(3 + 2x - 4x^2)$	M1 A1	Attempt to isolate y ie $y = a \ln(f(x))$ Must have scored first M1 ACF
		6	

Q	Answer	Marks	Comments
9(b)(ii)	$y = 0, 1 = 3 + 2x - 4x^{2}$ $\begin{bmatrix} 2x^{2} - x - 1 = 0 \end{bmatrix}$ $\begin{bmatrix} (2x + 1)(x - 1) = 0 \end{bmatrix}$	М1	<i>their</i> $(3+2x-4x^2) = 1$
	<i>x</i> = -0.5	A1	
		2	

	Question 9 Total	10		
Q	Answer	Marl	ks	Comments
10(a)	$\frac{x^2}{(3-x)(3+2x)(3-2x)} = \frac{A}{3-x} + \frac{B}{3+2x} + \frac{C}{3-2x}$ $x^2 = A(3+2x)(3-2x) + B(3-x)(3-2x)$ $+ C(3-x)(3+2x)$	B1		Correctly combining RHS PI
	$x = 3: 9 = A(9)(-3) \qquad A = -\frac{1}{3}$	M1	I	Attempt at finding one constant, could equate coefficients
	$x = 1.5:$ 2.25 = $C(1.5)(6)$ $C = \frac{1}{4}$	A1		Two constants correct
	$A = -\frac{1}{3}$ $B = \frac{1}{12}$ $C = \frac{1}{4}$	A1		All correct
		4		

Q	Answer	Marks	Comments
10(b)(i)	$(3-x)^{-1} = 3^{-1} \left(1 - \frac{x}{3}\right)^{-1}$		
	$\frac{1}{3}\left(1+\left(-1\right)\times\left(-\frac{x}{3}\right)+\frac{\left(-1\right)\times\left(-2\right)\times\left(-\frac{x}{3}\right)^{2}}{2}\right)$	М1	At least 2 terms correct (unsimplified)
	$=\frac{1}{3}+\frac{1}{9}x+\frac{1}{27}x^{2}$	A1	All correct, simplied1
		2	

Q	Answer	Marks	Comments
10(b)(ii)	x < 3 or $-3 < x < 3$	B1	
		1	

Q	Answer	Marks	Comments
10(c)	$(3-2x)^{-1} = \frac{1}{3} \left(1 + \frac{2}{3}x + \frac{4}{9}x^2 \right)$	M 1	At least one expansion correct (unsimplified)
	$(3+2x)^{-1} = \frac{1}{3} \left(1 - \frac{2}{3}x + \frac{4}{9}x^2 \right)$	A1	Both expansions correct (unsimplified)
	$\begin{bmatrix} f(x) = \\ -\frac{1}{3} \left(\frac{1}{3} + \frac{1}{9}x + \frac{1}{27}x^2 \right) + \frac{1}{12} \times \frac{1}{3} \left(1 - \frac{2}{3}x + \frac{4}{9}x^2 \right) \\ + \frac{1}{4} \times \frac{1}{3} \left(1 + \frac{2}{3}x + \frac{4}{9}x^2 \right)$	M1 A1ft	Attempt at finding $f(x)$ All correct, ft their <i>A</i> , <i>B</i> and <i>C</i> and their binomial expansions
	$=\frac{1}{27}x^2$	A1	Must have scored first 4 marks
		5	

|--|

Q	Answer	Marks	Comments
11	$2u \frac{du}{dx} = -2x$ or $\frac{du}{dx} = \frac{-x}{(9-x^2)^{0.5}}$ or $\frac{dx}{du} = -\frac{u}{(9-u^2)^{0.5}}$	B1	
	$\left[\int \frac{x^3}{(9-x^2)^{0.5}} dx = \right] \int \frac{x^2 \times x dx}{(9-x^2)^{0.5}}$ $= \int \frac{(9-u^2)2u}{u} \frac{du}{-2}$ $= \int u^2 - 9 du$		
	$=\int \frac{(9-u^2)2u}{u} \frac{\mathrm{d}u}{-2}$	M 1	All in terms of u , condone omission of du
	$=\int u^2 - 9 \mathrm{du}$	A1	Must see du here, or earlier
	$\left[\int \frac{x^3}{(9-x^2)^{0.5}} \mathrm{d}x = \right] \frac{u^3}{3} - 9u$	B1	Correct integral
	$\int_{0}^{1} \dots dx = \int_{3}^{\sqrt{8}} \dots du$ $= \left(\frac{8\sqrt{8}}{3} - 9\sqrt{8}\right) - (9 - 27)$	B1	Change of limits, maybe seen earlier (may change back to x and not change limits)
	$=\left(\frac{8\sqrt{8}}{3}-9\sqrt{8}\right)-(9-27)$	M1	Correctly substituting correct limits for u into their integral of the form $au^3 + bu$
	$=18-\frac{38}{3}\sqrt{2}$	A1	

Question 11 To	I 7
----------------	-----

Q	Answer	Marks	Comments
12(a)	$\overrightarrow{AB} = \begin{bmatrix} 4\\2\\3 \end{bmatrix} + \lambda \begin{bmatrix} -6\\4\\12 \end{bmatrix} \text{or} \begin{bmatrix} -2\\6\\15 \end{bmatrix} + \lambda \begin{bmatrix} -6\\4\\12 \end{bmatrix}$	M1 A1	Correct
	$4-6\lambda = -3p-2$ $2+4\lambda = 2p+6$ $3+12\lambda = 6p+15$ $3p-6\lambda = -6, \ p-2\lambda = -2$ $2p-4\lambda = -4, \ p-2\lambda = -2$ $6p-12\lambda = -12, \ p-2\lambda = -2$	m1	Equate 3 pairs of equations or solve a pair of equations oe
	Equations are consistent, hence <i>P</i> lies on <i>AB</i>	A1	CSO Should be convincingly shown
		4	

Q	Answer	Marks	Comments
12(b)(i)2	$\overrightarrow{CP} = \begin{bmatrix} -3p-2\\2p+6\\6p+15 \end{bmatrix} - \begin{bmatrix} -1\\10\\6 \end{bmatrix}$	М1	
	$\overrightarrow{CP} = \begin{bmatrix} -3p - 1 \\ 2p - 4 \\ 6p + 9 \end{bmatrix}$	A1	A1: Correct direction vector oe
	$\begin{bmatrix} -3p-1\\2p-4\\6p+9 \end{bmatrix} \cdot \begin{bmatrix} -6\\4\\12 \end{bmatrix} = 0$ 18p+6+8p-16+72p+108 = 0 98p = -98	m1	Correct scalar product
	<i>p</i> = -1	A1	
		4	

Q	Answer	Marks	Comments
12(b)(ii)	$AB = \sqrt{\left(4 - 2\right)^2 + \left(2 - 6\right)^2 + \left(3 - 15\right)^2}$		
	<i>AB</i> = 14	B1	
	$CP = \sqrt{(-1-1)^2 + (10-4)^2 + (6-9)^2}$	M1	Ft their p
	<i>CP</i> = 7	A1	
	Area <i>ABC</i> = 49	A1	
		4	

Q	Answer	Marks	Comments
12(c)	$AC^{2} = (41)^{2} + (2 - 10)^{2} + (3 - 6)^{2} = 98$ sin BAC = $\frac{7}{\sqrt{98}}$	М1	or $\cos BAC = \frac{\begin{bmatrix} -6\\4\\12\end{bmatrix} \cdot \begin{bmatrix} -5\\8\\3\end{bmatrix}}{14 \times 7\sqrt{2}} = \frac{1}{\sqrt{2}}$
	Angle $BAC = 45^{\circ}$	A1	oe
		2	

Question 12 Total	14	
-------------------	----	--