

INTERNATIONAL QUALIFICATIONS

INTERNATIONAL AS **MATHEMATICS**

MA01

(9660/MA01) Unit P1 Pure Mathematics

Mark scheme

January 2024

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from www.oxfordaqa.com

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

	5.4	
	Μ	Mark is for method
	m	Mark is dependent on one or more M marks and is for method
	Α	Mark is dependent on M or m marks and is for accuracy
	В	Mark is independent of M or m marks and is for method and accuracy
	E	Mark is for explanation
\checkmark	`or ft	Follow through from previous incorrect result
	CAO	Correct answer only
	CSO	Correct solution only
	AWFW	Anything which falls within
	AWRT	Anything which rounds to
	ACF	Any correct form
	AG	Answer given
	SC	Special case
	oe	Or equivalent
	A2, 1	2 or 1 (or 0) accuracy marks
	<i>–x</i> EE	Deduct <i>x</i> marks for each error
	NMS	No method shown
	PI	Possibly implied
	SCA	Substantially correct approach
	sf	Significant figure(s)
	dp	Decimal place(s)
	ISW	Ignore subsequent working

Q	Answer	Marks	Comments
1(a)(i)	$-\frac{7}{2}$	B1	
		1	

Q	Answer	Marks	Comments
1(a)(ii)	$-\frac{33}{2}$	B1	
		1	

Q	Answer	Marks	Comments
1(b)	Correctly orientated symmetrical parabola	B1	
	(0,8) labelled on the <i>y</i> -axis	B1	Condone label given as <i>y</i> -value only.
	Vertex labelled as $\left(\frac{7}{2}, -\frac{33}{2}\right)$	B1ft	ft Their $(-a,b)$ from part (a) Accept correctly positioned vertex with $x = \frac{7}{2}$ and $y = -\frac{33}{2}$ indicated on axes.
	(0, 8) $(0, 8)$ $($		
	Question 1 Total	5	

Q	Answer	Marks	Comments
2(a)	$[y=0 \Rightarrow 3x+2 \times 0-66=0 \Rightarrow x=22]$ (22,0)	B1	Correct coordinates of <i>P</i> Condone only correct <i>x</i> -coordinate given.
		1	

Q	Answer	Marks	Comments
2(b)	$\left[\text{Gradient of } l_1 = \right] -\frac{3}{2}$	M1	oe Correct gradient of <i>I</i> ₁
	$\begin{bmatrix} y=0 \Rightarrow 0=-\frac{3}{2}x-6 \Rightarrow x=-4 \end{bmatrix}$ (-4,0)	A1	Correct coordinates of Q Condone only correct <i>x</i> -coordinate given.
		2	

Q	Answer	Marks	Comments
2(c)(i)	$\left[-\frac{3}{2} \times m_{QR} = -1 \Longrightarrow\right]$		
	$\left[m_{QR}=\right]\frac{2}{3}$	B1	PI Correct gradient of QR ft Their gradient of l_1 and/or l_2 from part (b)
	$y-0=\frac{2}{3}(x-(-4))$ or $y=\frac{2}{3}x+\frac{8}{3}$	M1	Forms equation of <i>QR</i> ft Their gradient of <i>QR</i> and coordinates of <i>Q</i> ACF
	(14,12)	A2,1	Solves $3x + 2y - 66 = 0$ and $y = \frac{2}{3}x + \frac{8}{3}$ simultaneously. Accept $x = 14$ and $y = 12$ but must be clearly identified A1: One correct coordinate A2: Correct coordinates
		4	

Q	Answer	Marks	Comments
2(c)(ii)	$\frac{1}{2} \times (22 - (-4)) \times 12$	M1	ft their coordinates of <i>P</i> , <i>Q</i> and <i>R</i> provided <i>P</i> and <i>Q</i> are of the form (<i>x</i> ,0) oe May see $\frac{1}{2} \times PR \times QR = \frac{1}{2} \times 4\sqrt{13} \times 6\sqrt{13}$
	= 156	A1	САО
		2	

Question 2 To	9	
---------------	---	--

Q	Answer	Marks	Comments
3(a)	$\frac{8}{p}\sqrt{2p} = k\sqrt{2p} - \frac{12}{\left(\sqrt{2p}\right)^3}$ or $\frac{8}{p}(2p)^{\frac{1}{2}} = k(2p)^{\frac{1}{2}} - 12(2p)^{-\frac{3}{2}}$	М1	Substitutes the coordinates into the equation of the curve. oe
	$\frac{16p}{p} = 2kp - \frac{6}{p} \text{ or } \frac{16p}{p} = 2kp - 12(2p)^{-1}$ or $\frac{16p+6}{p} = 2kp$ or $\frac{8}{p} = k - \frac{12}{4p^2}$ or $32p = 4kp^2 - 12$	М1	Correctly multiplies or divides throughout by $\sqrt{2p}$ or $(2p)^{\frac{1}{2}}$, or multiplies throughout by $(2p)^{\frac{3}{2}}$ Surds or powers must be simplified. oe
	$[k=]\frac{8p+3}{p^2}$	A1	САО
		3	

Q	Answer	Marks	Comments
3(b)	$10t^{2} + 27t - 28 = w\sqrt{5t} - 2w$ or $10t^{2} + 27t - 28 = w(\sqrt{5t} - 2)$	М1	oe Isolates terms in <i>w</i> on one side. Condone one error.
	$[w] \frac{(10t^2 + 27t - 28)(\sqrt{5t} + 2)}{(\sqrt{5t} - 2)(\sqrt{5t} + 2)}$	М1	oe Divides both sides by $\sqrt{5t} - 2$ and multiplies numerator and denominator by $\sqrt{5t} + 2$ Denominator may be simplified or unsimplified.
	$[w=] \frac{(5t-4)(2t+7)(\sqrt{5t}+2)}{5t-4}$	М1	Factorises $10t^2 + 27t - 28$ correctly in their expression. Accept denominator not expanded. PI by correct final answer but M1M1 must have been awarded.
	$[w=] (2t+7)(\sqrt{5t}+2)$	A1	Must be convincingly shown. CAO
3(b) ALT	$10t^{2} + 27t - 28 = w\sqrt{5t} - 2w$ or $10t^{2} + 27t - 28 = w(\sqrt{5t} - 2)$	М1	oe Isolates terms in <i>w</i> on one side.
	$(5t-4)(2t+7) = w(\sqrt{5t}-2)$	М1	oe Factorises LHS correctly in their equation.
	$ \left(\sqrt{5t} - 2\right) \left(\sqrt{5t} + 2\right) (2t + 7) = w \left(\sqrt{5t} - 2\right) $ or $ [w =] \frac{\left(\sqrt{5t} - 2\right) \left(\sqrt{5t} + 2\right) (2t + 7)}{\left(\sqrt{5t} - 2\right)} $	М1	oe Factorises $(5t - 4)$ PI by correct final answer but M1M1 must have been awarded.
	$[w=] (2t+7)(\sqrt{5t}+2)$	A1	Must be convincingly shown. CAO
		4	

Question 3 Total	7	

Q	Answer	Marks	Comments
4(a)	$\begin{bmatrix} u_2 = \end{bmatrix} k - 9$ or $\begin{bmatrix} u_3 = \end{bmatrix} k - \frac{18}{k - 9}$ or $\begin{bmatrix} u_3 = \end{bmatrix} 5k - 54$	B1	oe Correct expression for u_2 or u_3 in terms of k Simplified or unsimplified.
	$k - \frac{18}{k - 9} = 5(k - 9) - 9$ or k(k - 9) - 18 = 5(k - 9)(k - 9) - 9(k - 9) or k(k - 9) - 18 = (5k - 54)(k - 9) or $k^2 - 9k - 18 = 5k^2 - 99k + 486$	М1	oe Expressions for u_2 and u_3 correctly substituted into $u_3 = 5u_2 - 9$
	$4k^{2} - 90k + 504 = 0$ or $2k^{2} - 45k + 252 = 0$	М1	Forms a correct quadratic equation set equal to zero oe , such as $4(k-9)^2 - 18(k-9) + 18 = 0$ PI By both correct values of k
	(2k-21)(k-12)=0 and $k=12k=\frac{21}{2}$	A1 A1	PI By both correct values of k oe Correct factorisation, such as ((k-9)-3)(4(k-9)-6)=0, and k = 12 stated May see substitution into the quadratic formula simplified or unsimplified but must be correct ACF
		5	

Q	Answer	Marks	Comments
4(b)	$\left[u_3 = 12 - \frac{18}{12 - 9} = \right] 6$	B1	Correct value for u_3 PI by correct value for u_4
	$\left[u_4 = 12 - \frac{18}{6} = \right] 9$	B1	
		2	

Question 4 Total 7

Q	Answer	Marks	Comments
5(a)	$\frac{1}{6}d \times \left(-\frac{1}{4}d\right) \times \left(-\frac{1}{4}d\right) = 18$	M1	oe Uses <i>x</i> -coordinates of <i>x</i> -intercepts with or without signs completely reversed, and set equal to 18 PI by $\frac{1}{96}d^3 = 18$ or $d^3 = 1728$ or $d = \sqrt[3]{1728}$
	$\frac{1}{96}d^3 = 18$ or $d^3 = 1728$ or $d = \sqrt[3]{1728}$ and d = 12	A1	oe AG
		2	

Q	Answer	Marks	Comments
5(b)	$ \begin{bmatrix} f(x) = \end{bmatrix} (x+2)(x-3)(x-3) $ or $ \begin{bmatrix} f(x) = \end{bmatrix} (x+2)(x-3)^2 $	M1	Product of three linear factors with two correct.
	$\begin{bmatrix} f(x) = \end{bmatrix} (x+2)(x^2-6x+9)$ or $\begin{bmatrix} f(x) = \end{bmatrix} (x-3)(x^2-x-6)$	М1	Product of a linear and a quadratic factor ft Their product of three linear factors
	$\begin{bmatrix} f(x) = \end{bmatrix} x^3 - 6x^2 + 9x + 2x^2 - 12x + 18$ or $\begin{bmatrix} f(x) = \end{bmatrix} x^3 - x^2 - 6x - 3x^2 + 3x + 18$ and $f(x) = x^3 - 4x^2 - 3x + 18$	A1	 CAO oe Further line of working with brackets expanded before AG SC1 for setting up correct simultaneous equations in <i>b</i> and <i>c</i> using values of intercepts.
		3	

Q	Answer	Marks	Comments
5(c)	$\begin{bmatrix} f(x-5) - 3 \Rightarrow \end{bmatrix}$ y+3=(x-5) ³ -4(x-5) ² -3(x-5)+18 or y+3=(x-3)(x-8)(x-8)	M1	oe Substitutes $(y+3)$ for y and $(x-5)$ for x into $y = f(x)$ simplified or unsimplified
	$[y = g(x) =] x^3 - 19x^2 + 112x - 195$	M1	Three correct terms in a simplified four- term expression
		A1	CAO
		3	

Q	Answer	Marks	Comments
5(d)	$ [g(5)=] 5^{3}-19\times5^{2}+112\times5-195 [=15] $ or $ [g(5)=] 125-475+560-195 [=15] $	М1	ft Their $g(x)$ from part (c) Substitutes $x = 5$ into $g(x)$
	[g(5)=]15 so $(x-5)$ is not a factor	A1ft	ft Their $g(x)$ from part (c) g(5) correctly evaluated for their $g(x)and correct concluding statementbased on their value of g(5)$
		2	

Question 5 To	10	
---------------	----	--

Q	Answer	Marks	Comments
6(a)	$\frac{x}{8} = \frac{6}{y} \text{ or } \frac{x+6}{y+8} = \frac{x}{8} \text{ or } \frac{x+6}{y+8} = \frac{6}{y}$ or $xy = 48$ or $[y=]\frac{48}{x} \text{ or } \frac{x}{6} = \frac{8}{y}$	B1	oe Finds relationship between x and y
	[T =] 48 + 4x + 3y or $[T =] \frac{1}{2}(x+6)(y+8)$ or $[T =] \frac{1}{2}(xy+8x+6y+48)$ or $[T =] \frac{1}{2}xy+4x+3y+24$	М1	oe Forms an expression for the area of the triangle.
	$48 + 4x + 3 \times \frac{48}{x}$ or $24 + \frac{144}{x} + 4x + 24$ or $[T =] \frac{1}{2} \left(48 + 8x + 6 \times \frac{48}{x} + 48 \right)$ or $[T =] \frac{1}{2} \times 48 + 4x + 3 \times \frac{48}{x} + 24$ and $T = 48 + 4x + \frac{144}{x}$	A1	oe Extra line of working with ' <i>y</i> 's eliminated and AG Be convinced.
		3	

Q	Answer	Marks	Comments
6(b)(i)	$\left[\frac{\mathrm{d}T}{\mathrm{d}x}\right] = 4 - \frac{144}{x^2}$	B1	oe Correct derivative
	$4 - \frac{144}{x^2} = 0$	М1	Sets their derivative to equal zero
	[<i>x</i> =] 6	Α1	CAO Ignore $x = -6$ if seen
	$\left[x=6 \Longrightarrow T=48+4\times 6+\frac{144}{6}\right] 96$	A1	CAO
		4	

Q	Answer	Marks	Comments
6(b)(ii)	$\left[\frac{\mathrm{d}^2 T}{\mathrm{d}x^2}\right] = \frac{288}{x^3}$	B1ft	oe ft their first derivative from part (b)(i) and second derivative must be of the form $\frac{k}{x^3}$ where $k > 0$
	$\left[x=6 \Rightarrow \frac{d^2T}{dx^2}\right] \frac{288}{6^3} \left[=\frac{288}{216} = \frac{4}{3}\right]$ and since $\frac{d^2T}{dx^2} > 0$ it is a minimum value of T	E1ft	x = 6 substituted into their second derivative and concluding statement made. ft their value of <i>x</i> provided it is positive Second derivative must be of the form $\frac{a}{x^3}$ oe .
		2	

Question 6 Total	9	
------------------	---	--

Q	Answer	Marks	Comments
7(a)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = \frac{1}{2} 4 - \frac{1}{2} x$	B1	Correct derivative
	$\left[x=4 \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x}=\right] 2$	B1	Correct gradient of <i>l</i>
	y-24 = 2(x-5) or [y=]2x+14	М1	ACF Forms a correct equation for <i>l</i>
	$35 + 4x - \frac{1}{4}x^2 = 2x + 14$	М1	ft Their expression for <i>y</i> in terms of <i>x</i> oe Eliminates <i>y</i>
	$\frac{1}{4}x^{2}-2x-21=0$ and $x^{2}-8x-84=0$	A1	oe Must see a second line of working before AG
		5	

Q	Answer	Marks	Comments
7(b)	[x=]-6 and $[x=] 14$	B1	Correct critical values
	-6< <i>x</i> <14	B1	CAO Accept interval notation (6,14) but not [6,14].
		2	

Q	Answer	Marks	Comments
7(c)(i)	$\left[\int \left(35 + 4x - \frac{1}{4}x^2 \right) dx = \right] 35x + 2x^2 - \frac{1}{12}x^3 + c$	B2,1	oe B1 At least two correct terms in the integration B2 Fully correct integration with '+c'
		2	

Q	Answer	Marks	Comments
7(c)(ii)	$\begin{bmatrix} \int_{-6}^{14} \left(35 + 4x - \frac{1}{4}x^2 \right) dx = \end{bmatrix}$ $\begin{pmatrix} 35 \times 14 + 2 \times 14^2 - \frac{1}{12} \times 14^3 \\ - \left(35 \times (-6) + 2 \times (-6)^2 - \frac{1}{12} \times (-6)^3 \right) \end{bmatrix}$	М1	ft their limits from part (b) Correct substitution into their integral from part (c)(i) May be partially evaluated PI
	$\frac{2320}{3}$ or $773\frac{1}{3}$	A1	Correct value for definite integral If given as decimal AWRT 773 PI by correct final answer.
	$\begin{bmatrix} x = -6 \Rightarrow y = 35 + 4(-6) - \frac{1}{4}(-6)^2 = \end{bmatrix} 2$ and $\begin{bmatrix} x = 14 \Rightarrow y = 35 + 4(14) - \frac{1}{4}(14)^2 = \end{bmatrix} 42$	В1	Correct <i>y</i> -coordinates of <i>P</i> and Q PI Could be implied by integral with limits eg $\int_{-6}^{14} 2x + 14 dx$
	$\frac{2320}{3} - \frac{1}{2}(2+42) \times 20$ or $\frac{2320}{3} - 440$	М1	oe ft their value for the definite integral but must have correct area of the trapezium simplified or unsimplified. PI
	$\frac{1000}{3}$ or $333\frac{1}{3}$	A1	Correct value for required area If given as decimal AWRT 333.33 NMS scores zero.
		5	

Q	Answer	Marks	Comments
7(c)(ii) ALT	$\int_{-6}^{14} \left(35 + 4x - \frac{1}{4}x^2 \right) - (2x + 14) dx$ $\int_{-6}^{14} \left(21 + 2x - \frac{1}{4}x^2 \right) dx$	М1	Sets up a single integral PI by correct final answer.
	$\left[21x + x^2 - \frac{1}{12}x^3\right]_{[-6]}^{[14]}$	M1 A1	Correct integration at least two terms correct. All correct. PI
	$[F(14) - F(-6) =]\frac{784}{3} - (-72)$	М1	Correct substitution. Simplified or unsimplified. PI
	$\frac{1000}{3}$ or $333\frac{1}{3}$	A1	Correct value for required area If given as decimal AWRT 333.33 NMS scores zero.
		5	

Question 7 To	ıl 14
---------------	-------

Q	Answer	Marks	Comments
8(a)	$\left[\left(1 - w \right)^3 = \right] 1 - 3w + 3w^2 - w^3$	B1	
		1	

Q	Answer	Marks	Comments
8(b)	$\begin{bmatrix} \left(1 - \sqrt{x}\right)^3 = \end{bmatrix} 1 - 3\sqrt{x} + 3\left(\sqrt{x}\right)^2 - \left(\sqrt{x}\right)^3$ $= 1 - 3\sqrt{x} + 3x - x\sqrt{x}$ or $\begin{bmatrix} \left(1 + \sqrt{x}\right)^3 = \end{bmatrix} 1 - 3\left(-\sqrt{x}\right) + 3\left(-\sqrt{x}\right)^2 - \left(-\sqrt{x}\right)^3$ $= 1 + 3\sqrt{x} + 3x + x\sqrt{x}$	B1ft	ft their answer to part (a) PI oe Correct expansion of $(1-\sqrt{x})^3$ or $(1+\sqrt{x})^3$ or $(1+w)^3$ simplified or unsimplified.
	$4(1-3\sqrt{x}+3x-x\sqrt{x})+1+3\sqrt{x}+3x+x\sqrt{x}$ or $4-12\sqrt{x}+12x-4x\sqrt{x}+1+3\sqrt{x}+3x+x\sqrt{x}$	М1	PI oe Substitutes their expansions into $4(1-\sqrt{x})^3 + (1+\sqrt{x})^3$
	$5 - 9\sqrt{x} + 15x - 3x\sqrt{x}$	A2,1	Must be expression in the correct form. A1 for a or b correct. A2 for a and b both correct.
		4	

8(c) $5-9x^{\frac{1}{2}}+15x-3x^{\frac{3}{2}}$ $\begin{bmatrix} \int \left(5-9x^{\frac{1}{2}}+15x-3x^{\frac{3}{2}}\right) dx = \end{bmatrix}$ $5x-\frac{2}{3}\times9x^{\frac{3}{2}}+\frac{15}{2}x^2-\frac{2}{5}\times3x^{\frac{5}{2}}[+c]$ or $5x-6x^{\frac{3}{2}}+\frac{15}{2}x^2-\frac{6}{5}x^{\frac{5}{2}}[+c]$ M1 A1ft A1ft A1ft A1ft A1ft A1ft A1ft A1ft	Q	Answer	Marks	Comments
$5x - \frac{2}{3} \times 9x^{\frac{3}{2}} + \frac{15}{2}x^2 - \frac{2}{5} \times 3x^{\frac{5}{2}} [+c]$ or $5x - 6x^{\frac{3}{2}} + \frac{15}{2}x^2 - \frac{6}{5}x^{\frac{5}{2}} [+c]$ M1 A1ft $5x - 6x^{\frac{3}{2}} + \frac{15}{2}x^2 - \frac{6}{5}x^{\frac{5}{2}} [+c]$ M1 A1ft $5x - 6x^{\frac{3}{2}} + \frac{15}{2}x^2 - \frac{6}{5}x^{\frac{5}{2}} + c = 20$ or $20 - 48 + 120 - \frac{192}{5} + c = 20$ M1 $y = 5x - 6x^{\frac{3}{2}} + \frac{15}{2}x^2 - \frac{6}{5}x^{\frac{5}{2}} - \frac{168}{5}$ M1 $y = 5x - 6x^{\frac{3}{2}} + \frac{15}{2}x^2 - \frac{6}{5}x^{\frac{5}{2}} - \frac{168}{5}$ A1 ACF With simplified coefficients.	8(c)	$5-9x^{\frac{1}{2}}+15x-3x^{\frac{3}{2}}$	B1ft	Correctly rewrites integrand as powers
$ y = 5x - 6x^{\frac{3}{2}} + \frac{15}{2}x^2 - \frac{6}{5}x^{\frac{3}{2}} + c = 20 $ M1 and sets it equal to 20 Must have '+ c' at this stage. PI by $c = -\frac{168}{5}$ or $c = -33.6$ PI by $c = -\frac{168}{5}$ or $c = -33.6$ A1 ACF With simplified coefficients.		$5x - \frac{2}{3} \times 9x^{\frac{3}{2}} + \frac{15}{2}x^2 - \frac{2}{5} \times 3x^{\frac{5}{2}} [+c]$ or	M1 A1ft	 M1: At least one term with fractional power correctly integrated, simplified or unsimplified. A1ft: Fully correct integration with simplified coefficients using their
		or	М1	and sets it equal to 20 Must have $'+c'$ at this stage.
5		$y = 5x - 6x^{\frac{3}{2}} + \frac{15}{2}x^2 - \frac{6}{5}x^{\frac{5}{2}} - \frac{168}{5}$		ACF With simplified coefficients.
			5	

Question 8 Tota	10	
-----------------	----	--

Q	Answer	Marks	Comments
9(a)	$\left[\frac{u_2}{u_1} = \frac{u_3}{u_2} \Longrightarrow\right] \frac{b}{a} = \frac{c}{b}$	M1	PI oe Forms a correct equation relating <i>a</i> , <i>b</i> and <i>c</i>
	$\begin{bmatrix} b^2 = ac \Rightarrow (27c^2)^2 = ac \Rightarrow c^4 = \frac{ac}{729} \Rightarrow \end{bmatrix}$ $\begin{bmatrix} c^3 = \end{bmatrix} \frac{a}{729} \text{ or } [c =] \frac{a^{\frac{1}{3}}}{9}$ $\text{or } 729c^3 = a \text{ or } 9c = a^{\frac{1}{3}} \end{bmatrix}$	М1	oe Uses $b^2 = ac$ to form an expression for c^3 or c or an equation in terms of a and c
	$\left[b^2 = ac \Longrightarrow b^2 = \right] \frac{a^4_3}{9}$	М1	oe Simplified or unsimplified. Uses $b^2 = ac$ and eliminates c PI by correct unsimplified final answer.
	$[b=] \frac{a^2_3}{3}$	A1	oe Must be simplified Allow $u_2 = \frac{a^2}{3}$ and $u_2 = \frac{\sqrt[3]{a^2}}{3}$
		4	

Q	Answer	Marks	Comments
9(a) ALT	$\left[\frac{u_2}{u_1} = \frac{u_3}{u_2} \Longrightarrow\right] \frac{b}{a} = \frac{c}{b}$	M1	PI oe Forms a correct equation relating <i>a</i> , <i>b</i> and <i>c</i>
	$\begin{bmatrix} b^2 = ac \Rightarrow c = \frac{b^2}{a} \Rightarrow \end{bmatrix}$ $b = 27 \left(\frac{b^2}{a}\right)^2 \text{ or } b = \frac{27b^4}{a^2}$	М1	PI oe Uses $b^2 = ac$ to eliminate <i>c</i> in $b = 27c^2$
	$\left[b^3=\right]\frac{a^2}{27}$	М1	oe Correct expression for b^3 in terms of <i>a</i> PI by correct unsimplified final answer.
	$[b=] \frac{a^2}{3}$	A1	oe Must be simplified. Allow $u_2 = \frac{a^2}{3}$ and $u_2 = \frac{\sqrt[3]{a^2}}{3}$
		4	

Q	Answer	Marks	Comments
9(b)	$\left[\frac{5-4\times(-3)^{n-1}}{k^n}\right] \frac{5}{k^n} - \frac{4\times(-3)^{n-1}}{k^n}$	M1	PI Writes as correct difference of two fractions
	$\begin{bmatrix} \frac{5}{k^n} \Rightarrow \frac{5}{k}, \frac{5}{k^2}, \frac{5}{k^3} \dots \end{bmatrix} a = \frac{5}{k}, r = \frac{1}{k}$ or $\begin{bmatrix} \frac{4 \times (-3)^{n-1}}{k^n} \Rightarrow \frac{4}{k}, \frac{-12}{k^2}, \frac{36}{k^3} \dots \end{bmatrix} a = \frac{4}{k}, r = \frac{-3}{k}$	М1	Deduces that $\frac{5}{k^n}$ or $\frac{4 \times (-3)^{n-1}}{k^n}$ describes a geometric sequence and gives the correct corresponding first term and common ratio PI by term equivalent to either $\frac{5}{k-1}$ or $-\frac{4}{k+3}$
	$\left[\sum_{n=1}^{\infty} \frac{5-4 \times (-3)^{n-1}}{k^n} = \sum_{n=1}^{\infty} \frac{5}{k^n} - \sum_{n=1}^{\infty} \frac{4 \times (-3)^{n-1}}{k^n} = \right]$ $\frac{\frac{5}{k}}{1-\frac{1}{k}} - \frac{\frac{4}{k}}{1-\left(-\frac{3}{k}\right)}$	M1	oe Uses the formula for the sum to infinity and correctly substitutes the correct first terms and common ratios
	$\frac{5}{k-1} - \frac{4}{k+3}$ or $\frac{5(k+3) - 4(k-1)}{(k-1)(k+3)}$	М1	Fractions eliminated from numerators and denominators Must be correct at this stage
	$\frac{k+19}{(k-1)(k+3)}$ or $\frac{k+19}{(k+3)(k-1)}$	A1	CAO In correct form
		5	
	Question 9 Total	9	