

INTERNATIONAL QUALIFICATIONS

INTERNATIONAL A-LEVEL MATHEMATICS

MA05

(9660/MA05) Unit M2 Mechanics

Mark scheme

January 2024

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaqa.com

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

М	Mark is for method
m	Mark is dependent on one or more M marks and is for method
Α	Mark is dependent on M or m marks and is for accuracy
В	Mark is independent of M or m marks and is for method and accuracy
E	Mark is for explanation
\checkmark or ft	Follow through from previous incorrect result
CAO	Correct answer only
CSO	Correct solution only
AWFW	Anything which falls within
AWRT	Anything which rounds to
ACF	Any correct form
AG	Answer given
SC	Special case
oe	Or equivalent
A2, 1	2 or 1 (or 0) accuracy marks
<i>–x</i> EE	Deduct <i>x</i> marks for each error
NMS	No method shown
PI	Possibly implied
SCA	Substantially correct approach
sf	Significant figure(s)
dp	Decimal place(s)
ISW	Ignore subsequent working

Q	Answer	Marks	Comments
1(a)(i)	Taking moments about <i>B</i>		
	Anticlockwise moments		
	$= (3.60 - x) \times 800 \times 9.8$	M1	ое
	Clockwise moments		
	= 3.60 × 6100 [= 21960]	M1	ое
	Principle of moments		
	$3.60 \times 6100 = (3.60 - x) \times 800 \times 9.8$		
	$x = 3.60 - \frac{3.60 \times 6100}{800 \times 9.8}$		
	<i>x</i> = 0.80	A1	AWRT 0.80 Note: unrounded answer is 0.798…
		3	

Q	Answer	Marks	Comments
1(a)(ii)	[Let R_B be the reaction force on the front wheels]		
	Forces in equilibrium gives		
	$R_B + 6100 = 800 \times 9.8$		
	$R_{B} = 1700 [N, to 2 sf]$	B1	AWRT 1700 [N] from correct working Note: unrounded answer is 1740 [N]
		1	

Q	Answer	Marks	Comments
1(b)(i)	W = Fd		
	$W = \left(0.95 \times 20^2\right) \times \left(20 \times 7.5\right)$	M1	
	W = 57,000 [J]	A1	oe
		2	

Q	Answer	Marks	Comments
	$F = \frac{P}{v} - 0.95v^2$		
	$F = \frac{780 \times 10^3}{50} - 0.95 \times 50^2$	M1	
	F = 13,000 [N, to 2 sf]	A1	oe Note: unrounded answer is 13,225 N
		2	

Q	Answer	Marks	Comments
1(b)(iii)	$\frac{P}{v} - 0.95v^2 = 0$		
	$v = \sqrt[3]{\frac{P}{0.95}}$		
	$v = \sqrt[3]{\frac{780 \times 10^3}{0.95}}$	M1	
	$v = 94 \left[m s^{-1}, to 2 sf \right]$	A1	Note: unrounded answer is 93.639… [m s ⁻¹]
		2	

Question 1 To	al 10	
---------------	-------	--

Q	Answer	Marks	Comments
2(a)	[Equilibrium perpendicular to slope]		
	$[N=]P+mg\cos(30^\circ)$	М1	N = normal reaction force
	[Equilibrium parallel to slope]		
	$[f=]mg\sin(30^\circ)$	М1	f = friction PI by use or sight of 83.3 [N]
	$mg\sin(30^\circ) \le \mu (P + mg\cos(30^\circ))$	m1	Use of $f \leq \mu N$ or $f = \mu N$
	$mg\left(\frac{\sin(30^\circ)}{\mu} - \cos(30^\circ)\right) \le P$		
	$17 \times 9.8 \times \left(\frac{\sin(30^\circ)}{0.4} - \cos(30^\circ)\right) \le P$		208.25 – 144.279 ≤ <i>P</i>
	$63.97 \le P$		
	Least value of <i>P</i> is 64 [to 2 sf]	A1	AWRT 64
		4	

Q	Answer	Marks	Comments
2(b)(i)	The block moves in a direction that is perpendicular to the force P newtons [so no work is done on the block by the force P newtons]	E1	oe
		1	

Q	Answer	Marks	Comments
2(b)(ii)	Work is done against friction	E1	ое
		1	

Q	Answer	Marks	Comments
2(b)(iii)	$ma = mg\sin(30^\circ) - \mu(P + mg\cos(30^\circ))$	M 1	Forms equation for the resultant force acting on the block, or better
	$a = 9.8 \times \sin(30^{\circ})$ $-0.4 \times \left(\frac{40}{17} + 9.8 \times \cos(30^{\circ})\right)$		
	$a = 0.56 \left[\text{m s}^{-2} \right]$	A1	AWRT 0.56 Note: unrounded answer is 0.5640… [m s ⁻²]
		2	

Q	Answer	Marks	Comments
2(b)(iv)	$s = ut + \frac{1}{2}at^2$		
	$s = 0.5 \times 0.564 \times 6^2$	M1	Use of $s = ut + \frac{1}{2}at^2$ with $u = 0$ and their $a \neq 9.8$ from (b)(ii)
	s = 10 [m]	A1ft	AWRT 10 ft their acceleration from (b)(iii) Note: unrounded answer is 10.15 [m]
		2	

	10	Question 2 Total
--	----	------------------

Q	Answer	Marks	Comments
3(a)	$[\mathbf{r} =] (1.5\cos(4t) + c_1)\mathbf{i} + (1.5\sin(4t) + c_2)\mathbf{j}$	M1 A1	 M1: Uses integration to find at least one correct component A1: Finds both correct components Condone no constants of integration for M1 A1
	When $t = 0$		
	$[\mathbf{r} =] (1.5 + c_1)\mathbf{i} + c_2\mathbf{j} = 1.5\mathbf{i}$		
	$\Rightarrow c_1 = 0$ and $c_2 = 0$		
	$[\mathbf{r} =] 1.5\cos(4t)\mathbf{i} + 1.5\sin(4t)\mathbf{j}$	B1	Finds correct position vector at time <i>t</i> by explicitly showing both constants of integration are zero/the constant of integration vector is zero
	$\left[\left \mathbf{r}\right =\right]\sqrt{\left(1.5\cos(4t)\right)^{2}+\left(1.5\sin(4t)\right)^{2}}$	m1	
	[r =] 1.5 [m]		Must have reference to constant
	so <i>A</i> is a constant distance away from <i>O</i> , meaning it moves on a circular path	A1	distance, not just 1.5 [m]
		5	

Q	Answer	Marks	Comments
3(b)(i)	$\left[\omega=\right]$ 4 rad s ⁻¹	B1 B1	B1 : Correct value B1 : Correct units
		2	

Q	Answer	Marks	Comments
3(b)(ii)	$m\omega^2 r = 4.9 \times 4^2 \times 1.5$ or $\frac{mv^2}{r} = \frac{4.9 \times 6^2}{1.5}$	М1	Use of $m\omega^2 r$ with their ω and $r = 1.5$ or use of $\frac{mv^2}{r}$ with $r = 1.5$ or use of F = m a and differentiation of v PI By correct magnitude of force
	120 [N, to 2 sf]	A1	CAO, AWRT 120 Exact answer is 117.6 [N]
	Towards O	B1	oe , such as $-\cos(4t)\mathbf{i} - \sin(4t)\mathbf{j}$
		3	

Q	Answer	Marks	Comments
3(c)	[Tension in string = 117.6 N]		
	117.6 = mg	M1	
	<i>m</i> = 12	A1	AWRT 12 Note: <i>m</i> = 12.244 if using <i>T</i> = 120 N
		2	

Question 3 Total	12	
------------------	----	--

Q	Answer	Marks	Comments
4(a)	$s = ut + \frac{1}{2}at^2$		
	$t = \sqrt{\frac{2d}{g}}$ or $t = \frac{d}{u}$	B1	Time to travel from <i>O</i> to <i>A</i>
	$d\left[=ut\right] = u\sqrt{\frac{2d}{g}}$ or $d = \frac{1}{2}g\left(\frac{d}{u}\right)^2$	M1	
	$u = \sqrt{\frac{gd}{2}}$	A1	oe
		3	

4(b)[Vertical component of velocity immediately before colliding with ground at A] $v = u + at$ B1or $v = 2u$ $\left[v = 0 + g \times \sqrt{\frac{2d}{g}}\right]$ $v = \sqrt{2gd}$ B1or $v = 2u$ Speed immediately before colliding with ground at Aor $= \sqrt{(2gd) + u^2}$ or $= \sqrt{(2u)^2 + u^2}$ M1 $= \sqrt{5} u$ A1	Q	Answer	Marks	Comments
$\begin{bmatrix} v = 0 + g \times \sqrt{\frac{2d}{g}} \end{bmatrix}$ $v = \sqrt{2gd}$ Speed immediately before colliding with ground at A $= \sqrt{(2u)^2 + u^2}$ $= \sqrt{5} u$ B1 or $v = 2u$ or $= \sqrt{(2gd) + u^2}$ or $= \sqrt{(2gd) + (\frac{gd}{2})}$	4(b)	before colliding with ground at A]		
$v = \sqrt{2gd}$ Speed immediately before colliding with ground at A $= \sqrt{(2u)^2 + u^2}$ $= \sqrt{5} u$ B1 or $v = 2u$ or $= \sqrt{(2gd) + u^2}$ or $= \sqrt{(2gd) + (\frac{gd}{2})}$ A1				
Speed immediately before colliding with ground at A $= \sqrt{(2u)^2 + u^2}$ $= \sqrt{5} u$ M1 A1 M1 A1				
ground at A $= \sqrt{(2u)^2 + u^2}$ $= \sqrt{5} u$ M1 $= \sqrt{5} u$ M1 $= \sqrt{2gd} + \left(\frac{gd}{2}\right)$ A1		$v = \sqrt{2gd}$	B1	or $v = 2u$
$=\sqrt{5} u$ A1				
		$=\sqrt{\left(2u\right)^2+u^2}$	M1	or $= \sqrt{(2gd) + u^2}$ or $= \sqrt{(2gd) + \left(\frac{gd}{2}\right)}$
3		$=\sqrt{5} u$	A1	
			3	

Question 4 Total

Q	Answer	Marks	Comments
5(a)	The logo is symmetric in the line through C , B and M	E1	Allow any mention of symmetry or that the centres of mass of the circle and the triangle lie on <i>CBM</i>
		1	

Q	Answer	Marks	Comments
5(b)	[C.O.M. of the circle from <i>M</i> is]		
	$2d\sin(60^\circ) + \frac{d}{2} \left[= d\left(\sqrt{3} + \frac{1}{2}\right) \right]$	B1	PI
	[C.O.M. of the triangle from <i>M</i> is]		
	$\frac{1}{3} \times 2d \sin(60^\circ) \left[= d \frac{\sqrt{3}}{3} \right]$	B1	PI
	$\rho \times \left(\frac{1}{2} \times 4d^2 \sin(60^\circ) + \frac{\pi d^2}{4}\right) \overline{Y}$ $= \rho \times \frac{1}{2} \times 4d^2 \sin(60^\circ) \times \frac{2d \sin(60^\circ)}{3}$ $+ \rho \times \frac{\pi d^2}{4} \times \left(2d \sin(60^\circ) + \frac{d}{2}\right)$ $\left(\sqrt{3} d^2 + \frac{\pi d^2}{4}\right) \overline{Y} = \sqrt{3} d^2 \times \frac{\sqrt{3}}{3} d$	M1 m1 A1	M1 : At least one of the three terms correct m1 : At least two of the three terms correct A1 : Fully correct equation Condone lack of ρ
	$+\frac{\pi d^2}{4} \times d\left(\sqrt{3} + \frac{1}{2}\right)$ $d^2\left(\sqrt{3} + \frac{\pi}{4}\right)\overline{Y} = d^3\left(1 + \frac{\pi}{4}\left(\sqrt{3} + \frac{1}{2}\right)\right)$		
	$\overline{Y} = \frac{4 + \pi \left(\sqrt{3} + \frac{1}{2}\right)}{4\sqrt{3} + \pi} \times d$		
	k = 1.09 [3 sf]	A1	Allow $k = \frac{4 + \pi \left(\sqrt{3} + \frac{1}{2}\right)}{4\sqrt{3} + \pi}$
		6	

Q	Answer	Marks	Comments
5(c)	[Let α be the angle <i>OM</i> makes with the vertical]		
	$\tan \alpha = \frac{1.094 \times d}{d}$	M1	$\tan \alpha = \frac{\overline{Y}}{d}$ using their \overline{Y}
	$\alpha = 48^{\circ}$	A1	Allow 47° as final answer if rounded answer of 1.09 <i>d</i> used
		2	

Question 5 To	ıl 9	
---------------	------	--

Q	Answer	Marks	Comments
6(a)	Loss in GPE for A		
U(u)	$mg\Delta h = 3 \times 9.8 \times 5$		
	= 147 [J]	B1	Sight or use of 147 or 15g or use of 29.4 PI by $v = 7\sqrt{2} \left[\text{m s}^{-1} \right]$
	Loss in GPE = Gain in KE for A $147 = \frac{1}{2}mv^2$		
	$v = \sqrt{\frac{2 \times 147}{3}} = 7\sqrt{2} \left[\text{m s}^{-1} \right]$	B1	oe, eg $\sqrt{10g}$ AWRT 9.9
	Total momentum of system before collision		
		M1	oe, eg $3\sqrt{10g}$ PI by sight or use of AWRT 30
	$\left[p=\right] 3 \times 7\sqrt{2} = 21\sqrt{2} \left[\text{kg m s}^{-1} \right]$		Total momentum before collision ft their speed of <i>A</i> before the collision
	Conservation of momentum		oe, eg $3\sqrt{10g} = 3 \times (\pm 2) + 10v_B$
	$21\sqrt{2} = 3 \times (\pm 2) + 10v_B$	M1	Condone $+$ or $-$ instead of \pm Total momentum after collision
	If <i>A</i> moves in the <u>same</u> direction after the collision, then speed of <i>B</i> is		
	$v_B = 2.37 \left[\text{m s}^{-1} \right]$	A1ft	Answer given to 3 sf ft their speed of <i>A</i> before the collision
	If <i>A</i> moves in the <u>opposite</u> direction after the collision, then speed of <i>B</i> is		
	$v_{B} = 3.57 \left[\text{m s}^{-1} \right]$	A1ft	Answer given to 3 sf ft their speed of <i>A</i> before the collision
		6	

Q	Answer	Marks	Comments
6(b)	$\left[\Delta p_B = \right] 10 \times 2.37 = 23.7 \left[\text{kg m s}^{-1} \right]$	M1	PI by correct answer
	$\left[F = \frac{\Delta p}{\Delta t} = \right] \frac{23.7}{0.20} = 120 \left[\text{N, to 2 sf}\right]$	A1ft	AWRT 120 N
		2	

Q	Answer	Marks	Comments
6(c)	Total KE of system after collision		
	$0.5 \times 3 \times 2^2 + 0.5 \times 10 \times 3.57^2$	M1	AWRT 70 PI by correct answer
	= 69.7245 [J]		
	KE lost during the collision		
	147 – 69.7245		
	= 77 [J, to 2 sf]	A1	AWRT 77 CAO
		2	

Question 6 To	10	
---------------	----	--

Q	Answer	Marks	Comments
7(a)	Resultant force acting on the particle		
	$\begin{bmatrix} 10\cos^2 t \\ 30t \\ 50e^{-2t} \end{bmatrix} + \begin{bmatrix} 10\sin^2 t \\ 90t^2 \\ -31 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -49 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -49 \end{bmatrix}$		
	$\begin{bmatrix} 10\\ 30t + 90t^2\\ 50e^{-2t} - 80 \end{bmatrix} [N]$	M1	oe At least two components correct Condone unsimplified
	Acceleration of the particle		
	$\mathbf{a} = \begin{bmatrix} 2\\ 6t + 18t^2\\ 10e^{-2t} - 16 \end{bmatrix} \text{ [m s}^{-2}\text{]}$	A1	Condone unsimplified Condone –6.2 instead of –16 in k component
	Velocity of the particle		
	$\mathbf{v} = \begin{bmatrix} 2t + c_1 \\ 3t^2 + 6t^3 + c_2 \\ -5e^{-2t} - 16t + c_3 \end{bmatrix}$	M1 A1	M1: At least one correct component A1: All three components correct Condone no constants of integration for M1 A1
	$\begin{bmatrix} \text{When } t = 0, \ \mathbf{v} = \begin{bmatrix} 3\\ -1\\ 5 \end{bmatrix} = \begin{bmatrix} c_1\\ c_2\\ -5 + c_3 \end{bmatrix} \end{bmatrix}$		
	$\mathbf{v} = \begin{bmatrix} 2t+3\\ 3t^2+6t^3-1\\ -5e^{-2t}-16t+10 \end{bmatrix} \text{ [m s}^{-1}\text{]}$	A1	CAO
		5	

Q	Answer	Marks	Comments
7(b)	$\mathbf{r} = \begin{bmatrix} t^2 + 3t + c_4 \\ t^3 + \frac{3}{2}t^4 - t + c_5 \\ \frac{5}{2}e^{-2t} - 8t^2 + 10t + c_6 \end{bmatrix}$	M1 A1	M1: At least one correct component A1: All three components correct Condone no constants of integration for M1 A1
	$\mathbf{r} = \begin{bmatrix} t^2 + 3t \\ t^3 + \frac{3}{2}t^4 - t \\ \frac{5}{2}e^{-2t} - 8t^2 + 10t - \frac{5}{2} \end{bmatrix}$	A1	Fully correct position vector
	$\left \mathbf{r}\right ^{2} = \left(t^{2} + 3t\right)^{2} + \left(t^{3} + \frac{3}{2}t^{4} - t\right)^{2} + \left(\frac{5}{2}e^{-2t} - 8t^{2} + 10t - \frac{5}{2}\right)^{2}$	М1	Writes down an unsimplified expression for the distance or distance-squared in terms of t or evaluates their position vector at $t = 0.8$ PI
	When $t = 0.8$ $ \mathbf{r} ^2 = (3.04)^2 + (0.3264)^2 + (0.88474)^2$ [= 10.13090412]	m1	Substitutes $t = 0.8$ into their expression for $ \mathbf{r} ^2$ or $ \mathbf{r} $ PI by at least two terms correct or correct final answer Dependent on both previous M1 marks
	$ \mathbf{r} = 3.18 \ [\text{m, to 3 sf}]$	A1	CAO to 3 sf
		6	

Question 7 Tota	11	
-----------------	----	--

Q	Answer	Marks	Comments
8(a)	[Time taken for the golf ball to cover the 90 m horizontal displacement]		
	$T = \frac{90}{30\cos\theta}$	B1	Any subject
	$[s=] 30\sin\theta T - 0.5 \times 9.8 \times T^2$	M1 A1	M1 : Use of $s = ut + \frac{1}{2}at^2$ with $u = 30\sin\theta$ and $a = \pm 9.8$ PI A1 : Fully correct
	$[s =] 30\sin\theta \times \frac{90}{30\cos\theta} - 0.5 \times 9.8 \times \left(\frac{90}{30\cos\theta}\right)^2$	m1	Eliminating T PI
	$[s =] 90\tan\theta - \frac{44.1}{\cos^2\theta}$		Correct simplification with second term in $\cos^2 \theta$
	$[s =] 90 \tan \theta - 44.1 \times (1 + \tan^2 \theta)$	m1	Use of $\sec^2\theta = 1 + \tan^2\theta$ PI
	$-2.4 = 90 \tan \theta - 44.1 - 44.1 \tan^2 \theta$	B1	Use of $s = -2.4$
	$\left[44.1\tan^2\theta - 90\tan\theta + 41.7 = 0\right]$		
	$\tan \theta = 1.3296, 0.7111$	m1	Ы
	$\theta = 53.054, 35.417$	A1	At least one unrounded value of $ heta$
	heta= 53.1, or $ heta=$ 35.4	A1	Both values of $ heta$ to 3 sf and no others
		9	

Q	Answer	Marks	Comments
8(b)	$T = \frac{90}{30\cos\theta}$		
	$T = \frac{90}{30\cos(53.054^{\circ})}$	M1	or use of their largest angle with $s = ut + \frac{1}{2}at^2$, $u = 30\sin\theta$ and $a = \pm 9.8$ PI
	T = 5.0 [s, to 2 sf]	A1ft	ft their larger angle from part (a) Note: unrounded answer is 4.99… [s]
		2	

Q	Answer	Marks	Comments
8(c)	The assumption is unlikely to be true [as the golf ball is moving quickly through the air]	E1	Allow any sensible comment
		1	

Question 8 Total 12
