

Please write clearly in block capitals.				
Centre number	Candidate number			
Surname				
Forename(s)				
Candidate signature	I declare this is my own work.	/		

INTERNATIONAL A-LEVEL MATHEMATICS

(9660/MA03) Unit P2 Pure Mathematics

Friday 2 June 2023 07:00 GMT Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use				
Question	Mark			
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
TOTAL				

	Answer all questions in the spaces provided.				
1	(a)	For each of the following find	$\frac{\mathrm{d}y}{\mathrm{d}x}$		
1	(a) (i)	$y = \left(3x^5 - 4\right)^8$	[2 marks]		
			[Z marko]		
			Answer		
1	(a) (ii)	$y = \frac{3x^4}{7x - 5}$	[2 marks]		
			Answer		
1	(a) (iii)	$ \ln\left(x^2\right) + y^2 = xy $	[3 marks]		
			Answer		

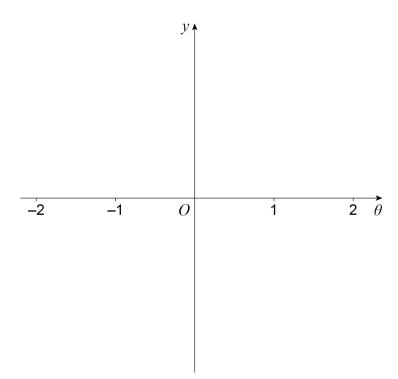
1	(b) (i)	Find $\int \frac{x-6}{x^2-12x+5} \mathrm{d}x$		[2 marks]
			Answer	
		(
1	(b) (ii)	Find $\int \frac{8x+6}{\left(2x^2+3x-1\right)^3} dx$		
		,		[3 marks]
			Answer	

2	(a)	The curve with equation $y=2^{-x}$ intersects the line $y=4-2x$ at a point where $x=\alpha$ and $\alpha>0$
2	(a) (i)	Show that α lies between 1.8 and 1.9 [2 marks]
2	(a) (ii)	Show that the equation $4-2x=2^{-x}$ can be rearranged into the form $x=2-2^{-(x+1)}$ [1 mark]
2	(a) (iii)	Use the iterative formula $x_{n+1} = 2 - 2^{-(x_n + 1)}$
		with $x_1 = 1.8$ to find the values of x_2 and x_3 giving your answers to three decimal places. [2 marks]
		$x_2 = \underline{\hspace{1cm}} x_3 = \underline{\hspace{1cm}}$

giving your answer to four significant figures.	
	[4

Describe a sequence of **two** geometrical transformations that maps the graph of $y = \sec \theta$ onto the graph of $y = 0.5\sec(\theta + 1)$

[4 marks]


3 (b) Sketch on the axes below the curve with equation

$$y = 0.5\sec(\theta + 1)$$
 for $-2 < \theta < 2$

where θ is in radians.

State the coordinates of the stationary point and the coordinates of any intercept with the axes.

[3 marks]

3	(c)	It is given that	$r = \frac{1}{1}$
Ū	(0)	it is given that	² 2cos

3	(c) (i)	Find	$\frac{\mathrm{d}x}{\mathrm{d}y}$
---	---------	------	-----------------------------------

[1 mark]

Answer

3	(c) (ii)	Hence find	$\frac{\mathrm{d}y}{\mathrm{d}x}$	in terms of	sin y
---	----------	------------	-----------------------------------	-------------	-------

[2 marks]

Answer____

10

4		The functions f and g are d	fined by		
		$f(x) = \sqrt{1 - 0.25}$			
		$g(x) = \frac{8}{x - 1}$	for all real value	es of $x, x \neq 1$	
4	(a)	State the range of the function	f	ſ	[1 mark]
			Answer		
4	(b) (i)	Find fg(x)		I	[1 mark]
			Answer		
4	(b) (ii)	Find the domain of the function	fg	[2	? marks]
			Answer		
4	(b) (iii)	Solve the equation $fg(x) = 3$		[2	? marks]
			Answer		

4	(c)	The inverse of the function fg is h	
4	(c) (i)	Find h(x) giving your answer in the form $h(x) = \frac{p - x^2}{q - x^2}$ where p and q are integers [3 mark	s]
			_
			_
			_
		Answer	
4	(c) (ii)	Solve the equation $h(x) = \frac{11}{3}$	
		[2 mark	s]
			_
		Answer	

5	(a)	Express $7\cos\theta + 24\sin\theta$ in the form $R\cos\left(\theta - \alpha\right)$ where $R > 0$ and 0 Give the value of α in radians to three significant figures.	[3 marks]
		Answer	
5	(b)	Show that	
		$2\csc 4x + 2\cot 4x = \cot x - \tan x$	
		for all x where $x \neq \frac{n\pi}{4}$	[4 marks]

5	(c)	By using a suitable trigonometrical identity, solve the equation
		$5\tan^2(2y+3) = 7 - 4\sec(2y+3)$
		Give all values of y to two decimal places in the interval $0 < y < \pi$ [5 marks]
		Answer

6		The polynomial $f(x)$ is defined by	
		$f(x) = 4x^3 + ax^2 + bx + c$	
		where a , b and c are constants.	
		It is given that $(2x-1)$ is a factor of $f(x)$	
		(2x - 1) is a radiof of $f(x)$	
		When $f(x)$ is divided by $(2x-3)$ the remainder is 15	
6	(a)	Show that $2a+b=2$	[3 marks]
			[o marko]

6 (b)	When $f(x)$ is divided by $(2x + 1)$ the remainder is 9	
	Find the remainder when $f(x)$ is divided by $(2x + 3)$	[4 marks]
	Answer	

7	(a)	A curve i	s defined by	the parai	metric equations
---	-----	-----------	--------------	-----------	------------------

$$x = \frac{t}{2t - 1} \quad \text{and} \quad y = 2t - \sqrt{t}$$

Find an equation of the normal to the curve at the point where t = 1

Give your answer in the form py + qx = r where p, q and r are integers.

[6 marks]

7 (b) A second curve is defined by the parametric equations

$$x = e^{2m} + e^{-2m}$$
 and $y = e^{2m} - e^{-2m}$

Answer

7 **(b) (i)** Find a Cartesian equation of this curve, giving your answer in the form $x^2 = f(y)$

[3 marks]

		Answer
,	(b) (ii)	Hence write down a Cartesian equation of the curve defined by the parametric equations
	(, (,	$x = e^{kn} + e^{-kn} \text{and} y = e^{kn} - e^{-kn}$
		where n is the parameter and k is a positive integer. [1 mark]
		Answer
•	(c)	A third curve is defined by the parametric equations
		$x = a \sin \theta + b \cos \theta$ and $y = a \cos \theta - b \sin \theta$
		where $ \theta $ is the parameter and $ a $ and $ b $ are constants.
		Find a Cartesian equation of this curve. [3 marks]
		Answer

8	(a)	The rate at which the population of a colony of ants is increasing is directly proportion to the population P of the colony.	al
		Currently the population is 1 000 000 and is increasing at a rate of 3000 per month.	
		Construct a differential equation for the population of the colony. [2 ma	rks]
		Answer	
8	(b)	It is given that $y = f(x)$ satisfies the differential equation	
		$2x\frac{\mathrm{d}y}{\mathrm{d}x} + y^2 = 4$	
		Find the solution of the differential equation for which $y = 1$ when $x = 1$	
		Give your answer in the form $y = f(x)$ [6 ma	rks]

	Do not write
	outside the
	-
	-
	-
	-
	-
	-
	_
	-
	-
	-
	-
	-
	-
	_
	-
	-
Answer	8
Turn over for the next question	

9	(a)	Find the coordinates of the stationary point of the curve with equation
		$y = x^{0.5} e^{-0.5x}$
		Give the coordinates in an exact form. [4 marks]
		Answer
9	(b)	The region bounded by the curve $y=x^{0.5}\mathrm{e}^{-0.5x}$, the lines $x=1,\ x=2$ and the x -axis is rotated through 2π radians about the x -axis to form a solid.
		Find the exact value of the volume of this solid.
		Give your answer in the form $\pi \left(\frac{a}{e} + \frac{b}{e^2} \right)$ where a and b are integers.
		[5 marks]

		Do not write outside the box
=		box
-		
-		
-		
_		
-	-	
-		
_		
-		
_		
-		
_		
-		
-		
-		
-		
_		
_		
-		
-		
-		
_		
-		
-		
_		
	Answer	9

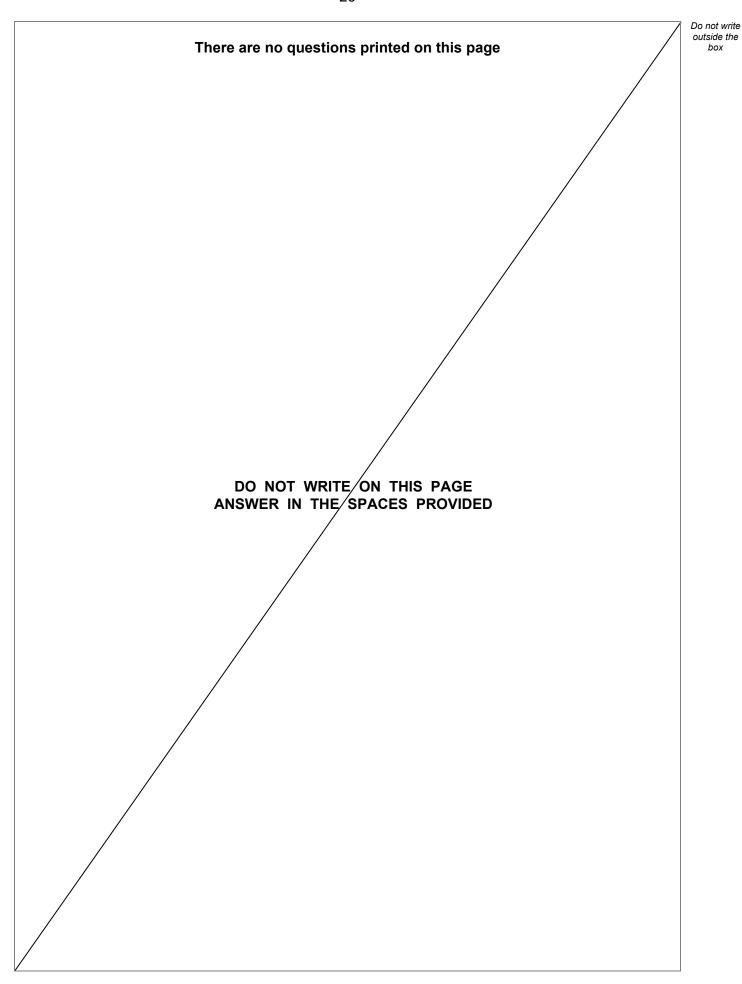
Do not write
outside the
have

10	Use the substitution $u = 1 + \sin \theta$ to find the value of
	$\int_0^{\frac{\pi}{2}} \left(\frac{\cos \theta}{\sqrt{1 + \sin \theta}} \right)^3 d\theta$
	giving your answer in the form $\ \frac{2}{3}\Big(p\sqrt{2}+q\Big)$ where p and q are integers. [8 marks]

	Do not write outside the
	box
	_
	-
	-
	_
	-
	-
	-
	-
	-
	-
	_
	-
	-
	-
	-
	-
	_
	-
	-
	-
	_
	-
	-
Answer	8
	1

11 (a)	Express $\frac{7x^2 - 17x + 12}{(3 - x)^2 (1 - 3x)}$ in the form $\frac{A}{(3 - x)} + \frac{B}{(3 - x)^2} + \frac{C}{(1 - 3x)}$	[4 marks]
	Answer	
11 (b)	Find the binomial expansion of $\left(3-x\right)^{-1}$ up to and including the term in x^2	[2 marks]
	Answer	

11 (C)	Use your answers to part (a) and part (b) to show that	
	$\frac{7x^2 - 17x + 12}{(3-x)^2(1-3x)} = D + Ex + Fx^2$	
	for small values of x stating the rational values of $D,$ E and F	[4 marks]


Answer ____

12 (a)	points $A(2, -1, 3)$ and $B(5, -2, -1)$	[1 mark]
	Answer	
12 (b)	The line l_2 has equation $\mathbf{r} = \begin{bmatrix} -2 \\ 5 \\ 7 \end{bmatrix} + \mu \begin{bmatrix} -1 \\ -2 \\ k \end{bmatrix}$	
	The lines l_1 and l_2 intersect.	
12 (b) (i)	Find the value of k	[3 marks]
	Answer	
12 (b) (ii)	Find the coordinates of the point of intersection.	[1 mark]
	Answer	

12 (c)	The point C has coordinates $(3,4,4)$ The perpendicular from C to the line l_2 meets l_2 at the point D	
	Find the length of CD	[6 marks]
	Answer	
	END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

