

Please write clearly in block capitals.						
Centre number	Candidate number					
Surname						
Forename(s)						
Candidate signature						
	I declare this is my own work.					

INTERNATIONAL AS **MATHEMATICS**

(9660/MA01) Unit P1 Pure Mathematics

Wednesday 17 May 2023 07:00 GMT Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
TOTAL		

Answer all questions in the spaces provided.				
1 (a)	It is given that			
		$m = 8a^{\frac{4}{3}}$ and n	$=2a^{\frac{1}{2}}$	
	where a is a positive of	constant.		
1 (a) (i)	Find mn			
	Circle your answer.			[1 mark]
	$10a^{\frac{2}{3}}$	$16a^{\frac{2}{3}}$	$10a^{\frac{11}{6}}$	$16a^{\frac{11}{6}}$
1 (a) (ii)	Find $\sqrt{\frac{m}{n}}$			
	Circle your answer.			[1 mark]
	$2a^{\frac{5}{12}}$	$\sqrt{6} a^{\frac{5}{12}}$	$2a^{\frac{5}{6}}$	$\sqrt{6} a^{\frac{5}{6}}$

1 (b) (i)	Find the value of p for which $500x^6 \times (5x^2)^p$ is constant for all non-zero values of x	Do not wi outside ti box
	[2 marks]	
	<i>p</i> =	
1 (b) (ii) Use the value of p found in part (b)(i) to calculate $500x^6 \times (5x^2)^p$	
	[1 mark]	
	Answer	5
	Turn over for the next question	
		1

2	(b)	The line l is the line of symmetry of the isosceles triangle.	Do not write outside the box
		Show that <i>l</i> has the equation $y = \frac{5}{6}x - \frac{9}{2}$ [4 marks]	
2	(c)	The line with equation $y = \frac{1}{2}x + d$ intersects <i>l</i> at the point (30, <i>k</i>) where <i>k</i> and <i>d</i>	
-	(0)	are constants.	
		Find the value of k and the value of d [3 marks]	
		k = d =	9

Turn over ►

An arithmetic sequence has first term a , common difference d and n th term u_n The sum of the first n terms of the sequence is S_n For this sequence $S_{30} - S_{10} - 522$ (a) Show that $10a + 195d = 261$ [3 marks] (b) It is also given that $u_{36} - 5u_9 + 27$ Find a formula in terms of n for the n th term of the arithmetic sequence. Give your answer in the form $u_n = pn - q$ where p and q are positive constants. [5 marks]			
The sum of the first <i>n</i> terms of the sequence is S_n For this sequence $S_{30} - S_{10} = 522$ (a) Show that $10a + 195d = 261$ [3 marks] [3 marks] [5 marks] [5 marks] [5 marks]	3	An arithmetic sequence has first term a , common difference d and n th term u_n	0
For this sequence $S_{30} - S_{10} = 522$ (a) Show that $10a + 195d = 261$ [3 marks] [3 marks] [5 marks] [5 marks] [5 marks] [5 marks] [5 marks]		The sum of the first <i>n</i> terms of the sequence is S_n	
(a) Show that $10a + 195d = 261$ [3 marks] [3 marks] [5 marks] [5 marks] [5 marks] [5 marks] [5 marks]		For this sequence $S_{30} - S_{10} = 522$	
(b) It is also given that $u_{36} = 5u_9 + 27$ Find a formula in terms of n for the n th term of the arithmetic sequence. Give your answer in the form $u_n = pn - q$ where p and q are positive constants. [5 marks]	8 (a)	Show that 10 <i>a</i> + 195 <i>d</i> = 261 [3 mar	ˈks]
(b) It is also given that $u_{36} = 5u_9 + 27$ Find a formula in terms of n for the n th term of the arithmetic sequence. Give your answer in the form $u_n = pn - q$ where p and q are positive constants. [5 marks]			
(b) It is also given that $u_{36} = 5u_9 + 27$ Find a formula in terms of n for the n th term of the arithmetic sequence. Give your answer in the form $u_n = pn - q$ where p and q are positive constants. [5 marks]			
(b) It is also given that $u_{36} = 5u_9 + 27$ Find a formula in terms of <i>n</i> for the <i>n</i> th term of the arithmetic sequence. Give your answer in the form $u_n = pn - q$ where <i>p</i> and <i>q</i> are positive constants. [5 marks]			
(b) It is also given that $u_{36} = 5u_9 + 27$ Find a formula in terms of n for the n th term of the arithmetic sequence. Give your answer in the form $u_n = pn - q$ where p and q are positive constants. [5 marks]			
Find a formula in terms of <i>n</i> for the <i>n</i> th term of the arithmetic sequence. Give your answer in the form $u_n = pn - q$ where <i>p</i> and <i>q</i> are positive constants. [5 marks]	(b)	It is also given that $u_{36} = 5u_9 + 27$	
Give your answer in the form $u_n = pn - q$ where p and q are positive constants. [5 marks]		Find a formula in terms of n for the n th term of the arithmetic sequence.	
		Give your answer in the form $u_n = pn - q$ where p and q are positive constants. [5 mar	ˈks]

		Do not write outside the box
	<i>u.</i> =	
	<i>uη</i>	
3 (c)	Find the number of terms in the arithmetic sequence that have a value less than 140 [2 marks]	
	Answer	10

(a)	The first four terms in ascending powers of x of the binomial expansion of $(1+6x)^7$ are	e
	$1 + ax + bx^2 + 7560x^3$	
	where a and b are constants.	
	Find the value of <i>a</i> and the value of <i>b</i> [3 mark	s]
		—
		_
		_
		—
		_
		_
		_
		_
		_
		—
		_
		_
	<i>a</i> = <i>b</i> =	_

4 (b)	In the expansion of	Do not write outside the box
	$\left(\frac{1}{2}-kx\right)\left(1+6x\right)^7$ where k is a constant	
	the coefficient of x^3 is 1512	
	Find the value of <i>k</i> [3 marks]	
	<i>k</i> =	6
	Turn over for the next question	

IB/G/Jun23/MA01

5 (a)	Use the trapezium rule with six ordinates (five strips) to find an approximate value for	Do r out:
	$\int_{1}^{3} 8^{\sqrt{x}} dx$	
	Give your answer to one decimal place. [4 marks]	
	Answer	

5	(b) (i)	Describe the transformation which maps the graph of $y = 8^{\sqrt{x}}$ onto the graph of	Do not write outside the box
		$\left(\frac{1}{3}+\sqrt{x}\right)$	
		$y = 8^{(0)}$ [3 mar	ˈks]
			—
5	(b) (ii)	Use your answers to part (a) and part (b)(i) to find an approximate value for	
		$\int_{1}^{3} 8^{\left(\frac{1}{3} + \sqrt{x}\right)} dx$	
		Give your answer to one decimal place. [2 mar	ˈks]
			—
		Answer	

6		The function f is given by	
		$f(x) = x^3 + ax^2 - 6bx + 7$	
		where a and b are constants.	
		When $f(x)$ is divided by $(x-4)$ the remainder is 23	
6	(a)	Use the Remainder Theorem to show that $2a - 3b = -6$	[2 marks]
6	(b)	The value of the gradient of the tangent of the curve $y = f(x)$ at the point where $x = -5$ is 21	
		Use the value of the gradient to find an equation of the form $pa + qb = r$ where p , q and r are integers.	[3 marks]
		Answer	

Do not write outside the box

6	(c)	Use your answers to part (a) and part (b) to find the value of <i>a</i> and the value of <i>b</i> [1 mark]	Do not write outside the box
		<i>a</i> = <i>b</i> =	
6	(d)	The function f is an increasing function when $x < -4$ or $x > 2$	
		The function g is given by $g(x) = 9 + 48x + x^2 - \frac{1}{3}x^3$	
		Find all of the values of x for which both f and g are increasing functions. [6 marks]	
		Answer	12

7		A curve has the equation	Do not write outside the box
		$y = x \left(x - 6x^{\frac{1}{3}} \right) + 16$	
		where $x > -4$	
7	(a)	Find $\frac{dy}{dx}$ [2 marks]	
		$\frac{\mathrm{d}y}{\mathrm{d}x} =$	
7	(b)	The curve has two stationary points P and Q	
		Show that the coordinates of <i>P</i> are (0, 16) and find the coordinates of <i>Q</i> [5 marks]	
		Q	

(c) (i)	Find $\frac{d^2 y}{dx^2}$	Do not write outside the box
	dx ⁻ [1 mark]	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = $	
(c) (ii)	Use your answers to part (b) and part (c)(i) to show that <i>Q</i> is a minimum. [1 mark]	
(d) (i)	Explain why it is not possible to use the <i>x</i> -coordinate of P with your answer to part (c)(i) to determine whether P is a minimum or a maximum.	
	[1 mark]	
(d) (ii)	Calculate the values of the gradient of the curve at the points where $x = -0.1$ and $x = 0.1$ and hence deduce that <i>P</i> is a maximum.	
	[2 marks]	
		12
	 c) (i) c) (ii) (d) (i) (d) (ii) 	c) (i) Find $\frac{d^2y}{dx^2}$ [1 mark] $\frac{d^2y}{dx^2} =$

8 Find the values of *a* for which

$$\int_{a^2}^{25a^2} \frac{6x+5x^2}{x^2\sqrt{x}} dx = 44$$
[7 marks]

		Do not write outside the
-		box
-		
		<u> </u>
	Answer	7
	Turn over for the next question	

	The first three terms of a geometric sequence are
	$u_1 = 27^{2p+1}$, $u_2 = 3^{18p}$ and $u_3 = 3^{6p+1}$
	where p is a constant.
<i>(</i>)	. 1
(a)	Show that $p = \frac{1}{6}$
	[4 marks]

[6 marks]

9 (b) The *n*th term of the geometric sequence is u_n

Show that for any positive integer k

$$54\sum_{n=k+1}^{6k} u_n = b^{c-k} \left(1 - b^{dk}\right)$$

where	<i>b</i> ,	С	and	d	are integers.
-------	------------	---	-----	---	---------------

	Do not write outside the
gin.	box

Question	Additional page, if required.	
number	Write the question numbers in the left-hand margin.	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

IB/G/Jun23/MA01