

INTERNATIONAL AS MATHEMATICS MA02

(9660/MA02) Unit PSM1 Pure Mathematics, Statistics and Mechanics

Mark scheme

June 2023

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaqaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

	Μ	Mark is for method
	m	Mark is dependent on one or more M marks and is for method
	Α	Mark is dependent on M or m marks and is for accuracy
	В	Mark is independent of M or m marks and is for method and accuracy
	E	Mark is for explanation
\checkmark	`or ft	Follow through from previous incorrect result
	CAO	Correct answer only
	CSO	Correct solution only
	AWFW	Anything which falls within
	AWRT	Anything which rounds to
	ACF	Any correct form
	AG	Answer given
	SC	Special case
	oe	Or equivalent
	A2, 1	2 or 1 (or 0) accuracy marks
	<i>–x</i> EE	Deduct <i>x</i> marks for each error
	NMS	No method shown
	Ы	Possibly implied
	SCA	Substantially correct approach
	sf	Significant figure(s)
	dp	Decimal place(s)

Q	Answer	Marks	Comments
1(a)	See artwork below	B1	Decreasing exponential curve of the correct form in the first and second quadrants asymptotic to the positive <i>x</i> -axis.
		В1	Correct value of <i>y</i> -intercept indicated. Allow correct coordinates instead of value.
		2	

Q	Answer	Marks	Comments
1(b)	$\left[y = \frac{1}{9^{(2\log_9 a - 0.5)}} = \frac{1}{9^{2\log_9 a} \times 9^{-0.5}} \right]$		
	$\left[9^{2\log_9 a}\right] a^2 \text{or} \left[9^{-2\log_9 a}\right] = a^{-2}$	M1	PI Expressing $9^{2\log_9 a}$ or $9^{-2\log_9 a}$ as the correct power of a
	$\frac{3}{a^2}$	A1ft	Correct <i>y</i> -coordinate of <i>P</i> in the correct form. ft their value for the <i>y</i> -intercept from part (a) for '3' provided it is positive. Allow $3a^{-2}$ for $\frac{3}{a^2}$
		2	

Question 1 Total	4	

Q	Answer	Marks	Comments
2(a)	[Arc Length =] 10θ or AB = 6 [cm]	M1	Correct length of arc <i>AB</i> in terms of θ or identifies that arc <i>AB</i> is 6 [cm] Possibly embedded in later working.
	$10\theta + 10 + 10 = 26$ or $10\theta + 20 = 26$ and $\theta = 0.6$	A1	Sets expression for perimeter equal to 26. PI by $10\theta = 6$ and AG Must be convincingly shown
		2	

Q	Answer	Marks	Comments
2(b)	$\frac{\sin(\angle BOC)}{14} = \frac{\sin(0.7)}{10}$	M1	PI oe Use of sine rule with correct values substituted. Allow AWRT 40.1° for 0.7 radians.
	$\left[\angle BOC = \sin^{-1}\left(\frac{14\sin(0.7)}{10}\right) = \right]$ 1.12[415] [radians]	A1	Correct ∠ <i>BOC</i> AWRT 1.12 Allow AWRT 64.4°
	[∠OBC =] π−0.7−1.12[415]	m1	 oe ft their ∠BOC provided M1 scored. Allow angles in degrees. PI by final answer of 1.317[43] rounded or truncated to at least 3dp or AWRT 75.5°
	[∠ <i>OBC</i> =] 1.32 [radians]	A1	AWRT 1.32 Must be in radians.
2(b) ALT	[Length of OC = x] $10^2 = 14^2 + x^2 - 2 \times 14 \times x \times \cos(0.7)$ or $\cos(0.7) = \frac{14^2 + x^2 - 10^2}{2 \times 14 \times x}$	M1	oe Correct use of cosine rule with values substituted. Allow AWRT 40.1° for 0.7 radians.
	$\begin{bmatrix} x^2 - 21.4 [1558] x + 96 = 0 \Rightarrow \end{bmatrix}$ [x =] 15.0[2714]	A1	Correct length of OC AWRT 15 Condone 6.38844… seen as well.
	$\frac{\sin(\angle OBC)}{15.0[2714]} = \frac{\sin(0.7)}{10}$ or $\cos(\angle OBC) = \frac{10^2 + 14^2 - (15.0[2714])^2}{2 \times 10 \times 14}$	m1	 oe ft their length of OC provided M1 scored. Correct use of sine rule or cosine rule with values substituted. Allow AWRT 40.1° for 0.7 radians. PI by correct final answer or anything that truncates to 75°
	[∠ <i>OBC</i> =] 1.32 [radians]	A1	AWRT 1.32 Must be in radians. Accept AWRT 1.31
		4	

Q	Answer	Marks	Comments
2(c)	$\left[\frac{1}{2} \times 10 \times 10 \times 0.6 = \right] 30 \left[\text{cm}^2 \right]$	B1	PI Correct area of sector <i>OAB</i>
	$\frac{1}{2} \times 10 \times 14 \times \sin(1.31[743])$	M1	oe Correct method for calculating the area of triangle <i>OBC</i> with values substituted. ft their ∠ <i>OBC</i>
	67.76[524][cm ²]	A1	Correct area of triangle <i>OBC</i> PI by correct final answer. AWFW 67.55 to 67.85
	97.8 [cm ²]	A1	CAO AWFW 97.55 to 97.85
		4	
	Question 2 Total	10	

Q	Answer	Marks	Comments
3(a)	$\left(\frac{8+11}{2}, \frac{5+(-10)}{2}\right)$ or $\left(\frac{19}{2}, -\frac{5}{2}\right)$	M1	oe Correct coordinates of, or correct method for finding, the midpoint of <i>PQ</i> Possibly embedded in later working.
	$\frac{5-(-10)}{8-11}$ or $\frac{15}{-3}$	М1	oe Correct method to find the gradient of <i>PQ</i>
	$\left(y - \left(-\frac{5}{2}\right)\right) = \frac{1}{5}\left(x - \frac{19}{2}\right) \mathbf{oe}$ or $2x - 10y = 44 \mathbf{oe}$ and x - 5y = 22	A1	Dependent on M1 M1 May see $y = \frac{1}{5}x + p$ and substitution of coordinates of the mid-point of <i>PQ</i> to find <i>p</i> but must be a complete method. AG Correct equation given but not in the required form or unsimplified before required result stated. Must be convincingly shown
		3	

Q	Answer	Marks	Comments
3(b)(i)	x - 5y = 22 and $y = 8x - 59$		
	(7, -3)	M1 A1	M1: Correct <i>x</i>-coordinateor <i>y</i>-coordinate.A1: Correct coordinates.
		2	

Q	Answer	Marks	Comments
3(b)(ii)	$(8-7)^{2} + (5-(-3))^{2} \text{ or } \sqrt{(8-7)^{2} + (5-(-3))^{2}}$ or $(11-7)^{2} + ((-10) - (-3))^{2}$ or $\sqrt{(11-7)^{2} + ((-10) - (-3))^{2}}$	M1	Method to find the radius or the square of the radius of <i>C</i> using either the coordinates of <i>P</i> or <i>Q</i> ft their centre of <i>C</i>
	$[r=] \sqrt{65}$ or $[r^2=] 65$	A1ft	ft their centre of C
	$(x-7)^{2} + (y+3)^{2} = 65$	A1ft	Correct equation in the correct form. ft their centre and r^2 provided all values are integers and M1 scored.
		3	

Q	Answer	Marks	Comments
3(c)	$\begin{bmatrix} d^2 = (7-2)^2 + (-3-(-9))^2 \end{bmatrix}$ $\begin{bmatrix} d^2 = \end{bmatrix} 61 \text{ or } [d=] \sqrt{61}$	B1ft	Correct distance or square of distance from centre of <i>C</i> to <i>R</i> ft their (b)(i) or (b)(ii) Allow 7.8[1024] for $\sqrt{61}$
	Since $\sqrt{61} < \sqrt{65}$ (or $61 < 65$) then <i>R</i> lies inside the circle.	E1ft	Compares their $\sqrt{61}$ with their $\sqrt{65}$ oe and gives a correct conclusion. ft their distance or square of distance from centre of <i>C</i> to <i>R</i> , and their <i>r</i> or r^2 provide both coordinates of the centre of <i>C</i> are integers. Allow 7.8[1024] for $\sqrt{61}$ and 8[.0622] for $\sqrt{65}$
		2	

		Question 3 Total	10	
--	--	------------------	----	--

Q	Answer	Marks	Comments
4(a)(i)	$25^{p} = Y^{2}$ or $(5^{p})^{2} = Y^{2}$ or $5^{2p} = Y^{2}$ or $5^{p+2} = 25Y$ or $5^{p+2} = (5^{2})Y$	М1	Correctly expressing 25^p or 5^{p+2} in terms of <i>Y</i> Possibly seen embedded in a quadratic equation.
	$Y^{2} - 25Y = 54$ or $Y^{2} - 25Y - 54 = 0$ and (Y+2)(Y-27) = 0	A1	Substitutes both correct expressions for <i>Y</i> into the quadratic equation before AG Must be convincingly shown
		2	

Q	Answer	Marks	Comments
4(a)(ii)	[Y =]-2 [or 5p = -2] or [Y =] 27 [or 5p = 27]	M1	PI States a correct possible value of <i>Y</i>
	$Y = -2 $ [or $5^p = -2$] is not possible since $Y > 0$ and $-2 < 0$	E1	Rejects $Y = -2$ as a possible solution and gives a valid reason. Accept 'log(-2) does not exist.', for example. Must see $[Y =] - 2$
	$[p =] \log_5 27$	A1	CAO , ISW Must have correct base.
		3	

Q	Answer	Marks	Comments
4(b)	$\log_{6}\left(\frac{x^{3}}{y^{3}}\right) - 2 = \log_{6}\left(6x^{3}y^{2}\right)$ or $3\log_{6}x - 3\log_{6}y - 2 = \log_{6}\left(6x^{3}y^{2}\right)$ or $3\log_{6}\left(\frac{x}{y}\right) - 2 = \log_{6}6x^{3} + \log_{6}y^{2}$	М1	oe Applies one logarithm rule correctly.
	$[2=] \log_6 36$ or $\log_6 6^2$ or $2\log_6 6$ or $\log_6 6 = 1$	B1	PI in later working May be seen at any point during the working
	$\log_{6}\left(\frac{x^{3}}{36y^{3}}\right) = \log_{6}\left(6x^{3}y^{2}\right)$ or $-2 = \log_{6}\left(\frac{6x^{3}y^{5}}{x^{3}}\right)$	M1	oe Forms a correct equation with a single logarithm on one or both sides. PI by $\frac{x^3}{36y^3} = 6x^3y^2$
	$[y =] 6^{-\frac{3}{5}}$	A1	ACF, ISW Accept $[y =] \frac{1}{\sqrt[5]{216}}$ or $[y =] \frac{1}{216^{\frac{1}{5}}}$ or $[y =] 216^{-\frac{1}{5}}$ or $[y =] \sqrt[5]{6^{-3}}$ or $[y =] (6^{-3})^{\frac{1}{5}}$
		4	

|--|

Q	Answer	Marks	Comments
5(a)	$\frac{\sin\theta}{1+\cos\theta} + \frac{1}{\frac{\sin\theta}{\cos\theta}}$ or $\frac{\sin\theta}{1+\cos\theta} + \frac{\cos\theta}{\sin\theta}$	M1	Use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$
	$\frac{\sin^2 \theta + (1 + \cos \theta) \cos \theta}{(1 + \cos \theta) \sin \theta}$ or $\frac{\sin^2 \theta + \cos^2 \theta + \cos \theta}{(1 + \cos \theta) \sin \theta}$ or $\frac{\sin \theta (1 - \cos \theta)}{\sin^2 \theta} + \frac{\sin \theta \cos \theta}{\sin^2 \theta}$	М1	oe Rearrangement to give a correct expression in terms of $\sin \theta$ and $\cos \theta$ with a common denominator. Allow $1 - \cos^2 \theta$ for $\sin^2 \theta$
	$\frac{1+\cos\theta}{(1+\cos\theta)\sin\theta} \text{ or } \frac{\sin\theta}{\sin^2\theta} \text{ or } \frac{1-\cos\theta}{\sin\theta} + \frac{\cos\theta}{\sin\theta}$ and $\frac{1}{\sin\theta}$	A1	Uses $\sin^2 \theta + \cos^2 \theta = 1$ AG Must be convincingly shown.
		3	

Q	Answer	Marks	Comments
5(b)	$\frac{2}{\sin 2x} = 4\sin 2x$	B1	oe , condone θ for $2x$ throughout.
	$2x = \sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$	M1	PI by 45° or 135° or one correct final answer. Ignore $2x = \sin^{-1}\left(-\frac{1}{\sqrt{2}}\right)$
	[x=] 22.5°, 67.5°	A2,1	A1: At least one correct answer.A2: Both correct answers with no others seen.
		4	

Question 5 Total	7	

Q	Answer	Marks	Comments
6(a)	[Variance = 40 × 0.4(1 − 0.4)] = 9.6	B1	oe
		1	

Q	Answer	Marks	Comments
6(b)	$P(L = 19) = {\binom{40}{19}} \times 0.4^{19} \times (1 - 0.4)^{40 - 19}$ or 0.8702 - 0.7911	М1	oe , PI AWRT 0.079 Uses correct formula for P(L = 19) or uses $P(L \le 19) - P(L \le 18)$
	= 0.079	A1	CAO
		2	

Q	Answer	Marks	Comments
6(c)	$[P(L > 13) = 1 - P(L \le 13)]$ $= 1 - 0.2112$	М1	PI Uses formula.
	= 0.789	A1	AWRT 0.789
		2	

Question 6 Total	5	
------------------	---	--

Q	Answer	Marks	Comments
7(a)(i)	[<i>a</i> =] 1	B1	
	[b=] 4	B1	
		2	

Q	Answer	Marks	Comments
7(a)(ii)	$0.4 \times 1 + 0.3 \times 4 + 0.3c = 3.4$	M1	Applies expectation formula for their a and b and sets equal to 3.4
	[c=] 6	A1	
		2	

Q	Answer	Marks	Comments
7(b)	$\begin{bmatrix} E(X^2) = \\ 0.4 \times 1^2 + 0.3 \times 4^2 + 0.3 \times 6^2 [= 16] \end{bmatrix}$	M1	Applies formula for $E(X^2)$ for their values of a , b and c PI by correct variance for their values of a , b and c
	$\begin{bmatrix} Var(X) = 16 - 3.4^2 = \end{bmatrix}$ 4.44 or $\frac{111}{25}$	A1ft	Correctly finds variance for their values of a , b and c Must use $E(X) = 3.4$
	$Var(X+Y) = 17.44$ or $\frac{436}{25}$	A1ft	ft their $Var(X)$ +13 Dependent on at least M1 awarded
		3	

Question 7 To	al 7	
---------------	------	--

MARK SCHEME – INTERNATIONAL AS MATHEMATICS – MA02 – JUNE 2023

Q	Answer	Marks	Comments
8(a)	0.24 × 0.74	M1	
	$= 0.1776$ or $\frac{111}{625}$	A1	
		2	

Q	Answer	Marks	Comments
8(b)	0.24 + 0.61 - 0.1776	M1	Applies the Addition rule with their part (a) [0.1776]
	$= 0.6724$ or $\frac{1681}{2500}$	A1ft	ft their part (a) [0.1776] provided final answer is between 0 and 1
		2	

Q	Answer	Marks	Comments
8(c)	0.24 – 0.1776		
	or		ft 0.24 their part (a)
	0.6724 – 0.61	M1	or their part (b) – 0.61
	or		
	0.24 × 0.26		
	$= 0.0624$ or $\frac{39}{625}$	A1	САО
		2	

Q	Answer	Marks	Comments
8(d)	$\frac{0.0624}{1-0.61}$	M1	oe, ft their part (c)
	$= 0.16$ or $\frac{4}{25}$	A1	CAO
		2	

Question 8 Total 8

Q	Answer	Marks	Comments
9(a)	$2-2 \times 0.6 - k = 0$ or $[k =] 2-2 \times 0.6$	M1	oe PI by correct answer
	[k =] 0.8	A1	
		2	

Q	Answer	Marks	Comments
9(b)	0.6 N	B1	Condone omission of units
		1	

Question 9 ⁻

Q	Answer	Marks	Comments
10(a)	$\left[v = \int (0.72 - 0.18t) dt\right]$		
	$[v =] 0.72t - 0.09t^2$	B1	oe Correct expression for v Allow '+ c '
	0 = 0.72 - 0.18t	M1	Uses <i>a</i> = 0 oe , Pl
	[t=] 4 [seconds]	A1	
	$[v =] 0.72t - 0.09t^2$		
	$[v_{\text{max}} =] 0.72 \times 4 - 0.09 \times 4^2$	m1	oe Substitutes their 4 into their integrated expression for <i>v</i>
	$[v_{\rm max} =]$ 1.44 ms ⁻¹	A1	CAO Condone omission of units
		5	

Q	Answer	Marks	Comments
10(b)(i)	$\left[v^2 = u^2 + 2as\right]$		
	$v^2 = 0^2 + 2 \times 9.8(7.68 - 2)$	М1	oe If more than one constant equation formula used it must be a complete method. PI by AWRT 111.3 Condone one sign error AWRT 11
	[<i>v</i> =] 10.55	A1	Exact answer is $\frac{14\sqrt{355}}{25}$
	ms ⁻¹	B1	Correct units.
		3	

Q	Answer	Marks	Comments
10(b)(ii)	$\left[s = \frac{1}{2}(u+v)t\right]$		
	$[s=] \frac{1}{2} \times (0+10.55) \times 0.3$	М1	oe PI ft their answer to part (b)(i) If more than one constant equation formula used it must be a complete method.
	[<i>s</i> =] 1.58 [metres]	A1	AWRT 1.58, allow 1.59 PI by correct final answer
	[Height = 2 - 1.58 =] 0.42 metres	B1ft	AWRT 0.42, allow 0.41 ft 0 < their 1.58 < 2 Condone omission of units
		3	

|--|

Q	Answer	Marks	Comments
11(a)	Conservation of Momentum		
	$4 \times 4.8 = 4\nu + 3m$	M1	oe Correct unsimplified equation. Allow sign error.
	[4v = 19.2 - 3m]		
	v = 4.8 - 0.75m	A1	AG Must be convincingly shown
		2	

Q	Answer	Marks	Comments
11(b)	$0 < 4.8 - 0.75m \left[\Rightarrow m < 6.4 \right]$	M1	oe Considers inequality or equality for $v = 0$ PI by 6.4 Condone equality or weak inequality
	$3 \ge 4.8 - 0.75m [\Rightarrow m \ge 2.4]$	M1	oe Considers inequality or equality for $v = 3$ PI by 2.4 Condone equality or strict inequality
	$2.4 \le m$ or m < 6.4	A1	oe At least one inequality correct For one of $2.4 \le m$ or $m < 6.4$ Accept $2.4 < m$ for $2.4 \le m$ but not $m \le 6.4$ for $m < 6.4$
	$2.4 \le m < 6.4$	A1	oe Both inequalities correct Accept $2.4 < m < 6.4$ but not $2.4 \le m \le 6.4$
		4	

Question 11 Tota	6	
------------------	---	--