

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS FM04

(9665/FM04) Unit FS2 Statistics

Mark scheme

June 2023

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaqaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

Μ	Mark is for method
m	Mark is dependent on one or more M marks and is for method
Α	Mark is dependent on M or m marks and is for accuracy
В	Mark is independent of M or m marks and is for method and accuracy
Е	Mark is for explanation
\checkmark or ft	Follow through from previous incorrect result
CAO	Correct answer only
CSO	Correct solution only
AWFW	Anything which falls within
AWRT	Anything which rounds to
ACF	Any correct form
AG	Answer given
SC	Special case
oe	Or equivalent
A2, 1	2 or 1 (or 0) accuracy marks
<i>–x</i> EE	Deduct <i>x</i> marks for each error
NMS	No method shown
PI	Possibly implied
SCA	Substantially correct approach
sf	Significant figure(s)
dp	Decimal place(s)

Q		Answer		Marks	Comments
1(a)				B1	N (0, $2\sigma^2$)
	$M_{10} - M_1$	$\sum_{i=1}^{10} M_i$	$\frac{1}{10}\sum_{1}^{10}M_i$	B1	Ν (10μ, 10 <i>σ</i> ²)
	N (0, 2 <i>σ</i> ²)	N (10μ, 10 <i>σ</i> ²)	$N\left(\mu,\frac{\sigma^2}{10}\right)$	B1	$N\left(\mu,\frac{\sigma^2}{10}\right)$
				3	

Q	Answer	Marks	Comments
1(b)(i)	N(0, 1)	B1	Identifies standard normal distribution
		1	

Q	Answer	Marks	Comments
1(b)(ii)	The expression includes population parameters	B1	oe or mention of μ or σ not allowed in the expression Condone unknown parameters
		1	

Question 1 Tota	5	
-----------------	---	--

Q	Answer	Marks	Comments
2	$ \begin{array}{l} H_{0}: \ \sigma_{A}^{2} \ = \sigma_{B}^{2} \\ H_{1}: \ \sigma_{A}^{2} \ \neq \sigma_{B}^{2} \end{array} $	B1	Both hypotheses needed oe
	$s_A^2 = \frac{1}{11-1} (556.3) [= 55.63]$ $s_B^2 = \frac{1}{7-1} (341.4) [= 56.9]$	M1	Correct calculation for one of s_A^2 or s_B^2
	$F = \frac{s_B^2}{s_A^2} = \frac{56.9}{55.63}$	М1	Calculates F test statistic with their values oe $\frac{5690}{5563}$ or $\frac{s_A^2}{s_B^2} = \frac{55.63}{56.9}$
	= 1.02	A1	AWRT 1.02 or $\frac{s_A^2}{s_B^2} = $ AWRT 0.98
	dof $v_A = 10$, $v_B = 6$	М1	PI
	$F_{6,10}(0.975) = 4.072$	A1	AWRT 4.1 or <i>p</i> -value of AWRT 0.46 or $\frac{1}{F_{6,10}(0.975)} = $ AWRT 0.25
	$1.02{<}4.072,$ Do not reject H_0	A1ft	Dependent on second M mark Correct comparison of their test statistic and their critical value Critical value must be from the lower tail if $F < 1$ or from the upper tail if F > 1 or their <i>p</i> -value and 0.025 and concludes that H ₀ is not rejected
	There is insufficient evidence to suggest that the company select one machine over the other.	E1	Gives a conclusion in context based on a comparison of the correct test statistic and correct critical value Condone definite conclusion
		8	

Question 2 Total 8	
--------------------	--

Q	Answer	Marks	Comments
3(a)	$P(X \ge 5) = 0.03641 < 0.05$ $P(X \ge 4) = 0.1087 > 0.05$	M1	$P(X \ge 5) = 0.03641 \text{ or}$ $P(X \ge 4) = 0.1087$
			oe eg $P(X \le 4) = 0.96359$ or $P(X \le 3) = 0.8913$
	[Critical region is] $X \ge 5$	A1	Both probabilities must be seen Either conclusion statement or both probabilities compared with 0.05 must be seen
		2	

Q	Answer	Marks	Comments
3(b)	$P(X \le 4 \lambda = 3.4) = 0.744$	M1	Finds $P(X \le 4 \lambda = 3.4) = AWRT 0.74$ or $P(X \le 5 \lambda = 3.4) = AWRT 0.87$
	P(Type II Error) = 0.744	A1	AWRT 0.744 Do not ignore subsequent working
		2	

Q	Answer	Marks	Comments
3(c)	[Power = 1 – P(Type II Error)] = 0.256	B1	AWRT 0.256
		1	

Question 3 Tota	5	
-----------------	---	--

Q	Answer	Marks	Comments
4(a)	$\left[E\left(\overline{X}-\overline{Y}\right)=\right]\mu_{X}-\mu_{Y}$	B1	
		1	

Q	Answer	Marks	Comments
4(b)	$\operatorname{Var}\left(\overline{X} - \overline{Y}\right) = \frac{5^2}{50} + \frac{7^2}{14}$	M1	oe calculation
	= 4	A1	AG Must see either $\frac{5^2}{50}$, $\frac{7^2}{14}$, $\frac{25}{50}$ or $\frac{49}{14}$ in a correct calculation before final answer
		2	

Q	Answer	Marks	Comments
4(c)	A linear combination of [independent] normally distributed random variables is also normally distributed	E1	Condone just stating that X and Y are normally distributed or \overline{X} and \overline{Y} are normally distributed
		1	

Q	Answer	Marks	Comments
4(d)	H ₀ : $\mu_X = \mu_Y$ H ₁ : $\mu_X \neq \mu_Y$ $\left[\left(\overline{X} - \overline{Y}\right) \sim N(0, 4)\right]$	B1	Both hypotheses oe
	$z = \pm \frac{28.5 - 24.3}{\sqrt{4}}$	M1	Ы
	= ±2.1	A1	PI by <i>p</i> = 0.0179 oe
	$z_{\rm crit} = \pm 1.8808$	B1	AWRT 1.88 or <i>p</i> = 0.0179 oe
	2.1 > 1.8808, Reject H ₀	A1ft	Correct comparison of their test statistic and their critical value with consistent signs or their <i>p</i> -value and 0.03 oe and concludes that H_0 is rejected ft their comparison
	Sufficient evidence to suggest that the two populations have different means	E1ft	Conclusion in context, consistent with conclusion on H_0 or test statistic and critical value if not explicitly stated Must not be definite
		6	
	Question 4 Total	10	

Q	Answer	Marks	Comments
5	H ₀ : $\mu_{\text{New}} = \mu_{\text{Original}}$ H ₁ : $\mu_{\text{New}} > \mu_{\text{Original}}$	B1	Both hypotheses needed oe
	$s_p^2 = \frac{(9-1) \times 0.09 + (5-1) \times 0.12}{9+5-2}$ [= 0.1]	M1	Apply formula for pooled variance.
	$t = \pm \frac{3.1 - 2.6}{\sqrt{0.1 \times \left(\frac{1}{9} + \frac{1}{5}\right)}}$	M1 m1	 M1: Correct numerator or correct denominator, ft their pooled variance PI m1: Both numerator and denominator correct, ft their pooled variance PI
	$=\pm 2.83$	A1	AWRT 2.83 or 2.835
	dof = v = 9 + 5 - 2 = 12	B1	PI by correct critical value
	$t_{\rm crit} = t_{12} = \pm 2.681$	B1	AWRT 2.68 or <i>p</i> -value of 0.0075
	2.83 >2.681, Reject H₀	A1ft	Dependent on second M mark Correct comparison of their test statistic and their critical value with consistent signs or their <i>p</i> -value and 0.01 and concludes that H_0 is rejected ft their comparison
	There is sufficient evidence to suggest that the yield for the new variety has increased	E1	Gives a conclusion in context based on a comparison of the correct test statistic and correct critical value
			Condone definite conclusion
		9	

|--|

Q	Answer	Marks	Comments
6(a)	$E(\overline{X}) = 3\mu$ and $E(\overline{Y}) = 4a\mu$	B1	Ы
	$E(S) = \mu = 3\mu - 4a\mu$	M1	$\mu=$ their E(\overline{X}) – their E(\overline{Y})
	<i>a</i> = 0.5	A1	oe CSO
		3	

Q	Answer	Marks	Comments
6(b)	Var $(\overline{X}) = \frac{\sigma^2}{n}$, Var $(\overline{Y}) = \frac{b\sigma^2}{n}$	M1	Finds Var (\overline{X}) or Var (\overline{Y})
	$\operatorname{Var}(S) = 3^{2} \frac{\sigma^{2}}{n} + (-4)^{2} \frac{b\sigma^{2}}{n}$ $\left[= (9+16b) \frac{\sigma^{2}}{n} \right]$	M1	Finds Var(S) with their Var (\overline{X}) and Var (\overline{Y})
	Var(S) \rightarrow 0 as $n \rightarrow \infty$ so S is a consistent estimator	A1	CSO, Statement needed
		3	

Q	Answer	Marks	Comments
6(c)(i)	$\operatorname{Var}(T) = \left(\frac{3}{2}\right)^2 \frac{\sigma^2}{n} + \left(-1\right)^2 \frac{b\sigma^2}{n}$ $\left[=\left(\frac{9}{4} + b\right)\frac{\sigma^2}{n}\right]$	М1	Finds correct Var(<i>T</i>)
	Relative Efficiency = $\frac{\frac{1}{Var(T)}}{\frac{1}{Var(S)}} = \frac{9+16b}{\frac{9}{4}+b}$		
	$\frac{36+64b}{9+4b}$	A1	AG Must see a correct unsimplified expression for relative efficiency before the final answer
		2	

Q	Answer	Marks	Comments
6(c)(ii)	As $b \to 0$, $\frac{36+64b}{9+4b} \to 4$	B1	Condone $b = 0$, $\frac{36+64b}{9+4b} = 4$ or $\frac{36+64b}{9+4b} = 4 + \frac{48b}{9+4b} > 4$
	As $b \to \infty$, $\frac{36+64b}{9+4b} \left[= \frac{\frac{36}{b}+64}{\frac{9}{b}+4} \right] \to 16$	B1	Condone $b = \infty$, $\frac{36+64b}{9+4b} = 16$ or $\frac{36+64b}{9+4b} = 16 - \frac{108}{9+4b} < 16$
	$\frac{36+64b}{9+4b}$ is an increasing function for $b > 0$ (and lies between the limits)	E1	Correct reference to increasing function, such as a sketch of the graph of $\frac{36+64b}{9+4b}$ or conclusion following both correct inequalities
		3	

Q	Answer	Marks	Comments
6(c)(iii)	Efficiency of <i>T</i> relative to $S > 1$ so <i>T</i> is the more efficient estimator of μ	E1	
		1	
	Question 6 Total	12	

Q	Answer	Marks	Comments
7(a)	$\overline{x} = 94$	B1	Ы
	$s^2 = \frac{1}{11 - 1} \left(97846 - \frac{1034^2}{11} \right)$	М1	PI
	$s^2 = 65$	A1	oe eg <i>s</i> = AWRT 8.06
	s = 65 $t_{\rm crit} = t_{10} = 2.228$	B1	AWRT 2.2
	94.0 \pm 2.228 $\sqrt{\frac{65}{11}}$	M1	ft their values of \overline{x} , s^2 and critical value
	(88.6, 99.4)	A1	CSO
		6	

Q	Answer	Marks	Comments
7(b)	The emission values are taken from a normal distribution	B1	Context (CO ₂ emission values) not needed
		1	

Q	Answer	Marks	Comments
7(c)(i)	100 lies above the confidence interval	E1	
	The car model may qualify for the partial government refund	E1	Condone definite statement
		2	

Q	Answer	Marks	Comments
7(c)(ii)	As 100 is in the confidence interval, car model may not qualify for the partial government refund	E1	Condone definite statement.
		1	

Question 7 Tot	l 10	
----------------	------	--

Q	Answer	Marks	Comments
8(a)	$1394 \int_{1500}^{2000} \frac{1}{1500} e^{\frac{-x}{1500}} dx$	M1	Correct integral with correct limits. Condone λ for 1/1500
	$\left[= 1394 \left[-e^{-\frac{x}{1500}} \right]_{1500}^{2000} \right]$		Condone 1501 and/or 1999 Condone 1394 may be implied by later working
	$1394\left(e^{-1}-e^{-\frac{4}{3}}\right)=145[.37]$	A1	AG Must see either a correct exact answer or a more accurate answer before the final answer
		2	

Q	Answer	Marks	Comments
8(b)	$\Sigma \frac{\left(M-E\right)^2}{E} = \frac{144}{395} + \frac{676}{283} + \frac{64}{203} + \frac{400}{145} + \frac{25}{104} + \frac{25}{75} + \frac{100}{189}$	M1	oe Pl Condone copying errors
	= 6.93	A1	
		2	

Q	Answer	Marks	Comments
8(c)	H ₀ : Distances between mutations have an exponential distribution with $\lambda = \frac{1}{1500}$	B1	oe Both hypotheses referring to exponential distribution.
	H ₁ : Distances between mutations do not have an exponential distribution with $\lambda = \frac{1}{1500}$	B1	$\lambda = \frac{1}{1500}$ seen in hypotheses
	$\chi_6^2(0.90) = 10.645$	B1	AWRT 10.6
	$6.93 < 10.645$, Do not reject H $_0$	B1ft	Compares 6.93 with their critical value and concludes that H ₀ is not rejected
	Insufficient evidence not to support the researcher's belief	E1ft	Gives a conclusion in context based on a comparison of their test statistic and the correct critical value
		5	Condone definite conclusion
		3	

Question 8 Total	9	

Q	Answer	Marks	Comments
9(a)(i)	$\mathbf{M}_{X}'(t) = \lambda \mathbf{e}^{t} \mathbf{e}^{\lambda \left(\mathbf{e}^{t} - \mathbf{l}\right)}$	M1	Correctly differentiated function
	$E(X) = M'_{X}(0) = \lambda e^{0} e^{\lambda(e^{0} - 1)} = \lambda$	A1	AG , substitutes $t = 0$ into correct expression
		2	

Q	Answer	Marks	Comments
9(a)(ii)	$\mathbf{M}_{X}''(t) = \lambda \mathbf{e}^{t} \mathbf{e}^{\lambda(e^{t}-1)} + \lambda^{2} \mathbf{e}^{2t} \mathbf{e}^{\lambda(e^{t}-1)}$	B1	Correctly differentiated function
	$\mathbf{M}_{X}''(0) = \lambda e^{0} e^{\lambda(e^{0}-1)} + \lambda^{2} e^{2\times0} e^{\lambda(e^{0}-1)} \left[= \lambda + \lambda^{2} \right]$	M1	Substitutes $t = 0$ into their $\mathbf{M}_X''(t)$
	$\operatorname{Var}(X) = \lambda + \lambda^2 - \lambda^2 = \lambda$	A1	CSO
		3	

Q	Answer	Marks	Comments
9(b)(i)	$\mathbf{M}_{Z}(t) = \mathbf{M}_{X}(t) \times \mathbf{M}_{Y}(t)$	M1	
	$= e^{\lambda(e^{t}-1)} \times e^{\mu(e^{t}-1)}$ $= e^{(\lambda+\mu)(e^{t}-1)}$	A1	Allow unsimplified form
		2	

Q	Answer	Marks	Comments
9(b)(ii)	$v = \lambda + \mu$	B1ft	Must be consistent with answer for (b)(i)
		1	

Q	Answer	Marks	Comments
9(c)	$\mathbf{M}_{W}(t) = \left(1 + \frac{\lambda(\mathbf{e}^{t} - 1)}{n}\right)^{n}$	M1	
	$\lim_{n\to\infty}\mathbf{M}_{W}(t) = e^{\lambda(e^{t}-1)}$	M1	Use of $\lim_{n \to \infty} \left(1 + \frac{\alpha}{n} \right)^n = e^{\alpha}$
	This is the MGF for the Poisson Distribution with population parameter $\lambda = np$	A1	Identifies MGF as the same as the MGF for the Poisson distribution with $\lambda = np$
		3	

Q	Answer	Marks	Comments
9(d)	Binomial distribution can be approximated by Poisson distribution as $n \rightarrow \infty$	E1	oe
		1	

|--|