

Please write clearly in	block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

INTERNATIONAL A-LEVEL MATHEMATICS

(9660/MA03) Unit P2 Pure Mathematics

Tuesday 10 January 2023 07:00 GMT Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
TOTAL		

	Answer all questions in the spaces provided.		Do out
l (a)	The function f is defined by $f(x) = 3^x$ for all real values of x		
	Show that		
	f(x+1)-f(x-2)=kf(x)		
	where k is a constant.	[3 marks]	
			-

1	(b)	The function g is defined by	Do not write outside the box
		$g(x) = \frac{3-x}{5+2x}$ for all real values of $x, x \neq -2.5$	
		The inverse of g is g^{-1}	
1	(b) (i)	Find $g^{-1}(x)$ [3 marks]	
		Answer	
1	(b) (ii)	State the range of g^{-1} [1 mark]	
		Answer	7

Turn over ►

2 (a) Express $8\cos\theta + 15\sin\theta$ in the form $R\cos(\theta - \alpha)$, where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$, giving the value of α to the nearest degree. [3 marks]	_			
gring the rade of a to the method edge. [3 marks]	2 (a	1)	Express $8\cos\theta + 15\sin\theta$ in the form $R\cos(\theta - \alpha)$, where $R > 0$ and 0 giving the value of α to the pearest degree	$0^\circ < lpha < 90^\circ$,
2 (b) (i) Hence write down the minimum value of			giving the value of α to the hearest degree.	[3 marks]
2 (b) (i) Hence write down the minimum value of				
2 (b) (i) Hence write down the minimum value of				
2 (b) (i) Hence write down the minimum value of $Answer _$ $ 8\cos\theta+15\sin\theta $ [1 mark] $Answer _$ 2 (b) (ii) Hence find a value of θ at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree. [1 mark]				
2 (b) (i) Hence write down the minimum value of				
2 (b) (i) Hence write down the minimum value of				
2 (b) (i) Hence write down the minimum value of Image: Answer in the minimum value of at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree. [1 mark]				
2 (b) (i) Hence write down the minimum value of $ 8\cos\theta+15\sin\theta $ [1 mark] Answer 2 (b) (ii) Hence find a value of θ at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree. [1 mark]				
2 (b) (i) Hence write down the minimum value of $ 8\cos\theta + 15\sin\theta $ [1 mark] Answer 2 (b) (ii) Hence find a value of θ at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree. [1 mark]				
2 (b) (i) Hence write down the minimum value of $ 8\cos\theta+15\sin\theta $ [1 mark] Answer 2 (b) (ii) Hence find a value of θ at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree. [1 mark]				
2 (b) (i) Hence write down the minimum value of $ 8\cos\theta+15\sin\theta $ [1 mark] Answer 2 (b) (ii) Hence find a value of θ at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree. [1 mark]				
2 (b) (i) Hence write down the minimum value of $ 8\cos\theta+15\sin\theta $ [1 mark] Answer 2 (b) (ii) Hence find a value of θ at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree. [1 mark]				
Answer 2 (b) (i) Hence write down the minimum value of $ 8\cos\theta+15\sin\theta $ [1 mark] Answer Answer 2 (b) (ii) Hence find a value of θ at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree. [1 mark]				
2 (b) (i) Hence write down the minimum value of $\begin{vmatrix} 8\cos\theta + 15\sin\theta \end{vmatrix}$ [1 mark] Answer 2 (b) (ii) Hence find a value of θ at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree. [1 mark]			Answer	
2 (b) (i) Hence write down the minimum value of $ 8\cos\theta+15\sin\theta $ [1 mark] Answer 2 (b) (ii) Hence find a value of θ at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree. [1 mark]				
2 (b) (i) Hence write down the minimum value of $\begin{vmatrix} 8\cos\theta + 15\sin\theta \end{vmatrix}$ [1 mark] Answer 2 (b) (ii) Hence find a value of θ at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree. [1 mark]				
2 (b) (ii) Hence find a value of θ at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree. [1 mark]	2 (b	o) (i)	Hence write down the minimum value of	
[1 mark] Answer 2 (b) (ii) Hence find a value of θ at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree. [1 mark]			$8\cos\theta + 15\sin\theta$	
 Answer 2 (b) (ii) Hence find a value of θ at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree. [1 mark] 				[1 mark]
 Answer 2 (b) (ii) Hence find a value of θ at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree. [1 mark] 				
 Answer 2 (b) (ii) Hence find a value of θ at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree. [1 mark] 				
 Answer 2 (b) (ii) Hence find a value of θ at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree. [1 mark] 				
Answer 2 (b) (ii) Hence find a value of θ at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree. [1 mark]				
2 (b) (ii) Hence find a value of θ at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree. [1 mark]			Answer	
 2 (b) (ii) Hence find a value of θ at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree. [1 mark] 				
giving your answer to the nearest degree. [1 mark]				
[······]	2 (b	o) (ii)	Hence find a value of θ at which the minimum value in part (b)(i) occurs,	
	2 (b	o) (ii)	Hence find a value of θ at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree.	[1 mark]
	2 (b)) (ii)	Hence find a value of θ at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree.	[1 mark]
	2 (b)) (ii)	Hence find a value of θ at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree.	[1 mark]
	2 (b)) (ii)	Hence find a value of θ at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree.	[1 mark]
	2 (b)) (ii)	Hence find a value of θ at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree.	[1 mark]

		1
2 (c)	Use your answer to part (a) to solve the equation	
	$8 \operatorname{cosec}(2y+10^{\circ})+15 \operatorname{sec}(2y+10^{\circ})=8.5 \tan(2y+10^{\circ})+8.5 \operatorname{cot}(2y-10^{\circ})$	+10°)
	aiving all solutions to the nearest degree in the interval $-180^{\circ} < v < 180^{\circ}$,
		[5 marks]
	Answer	

Turn over ►

3		The polynomial $f(x)$ is defined by
		$f(x) = 16x^3 + bx^2 + cx$
		where b and c are constants.
		When $f(x)$ is divided by $(2x+3)$ the remainder is -45
		When $f(x)$ is divided by $(4x-5)$ the remainder is 10
3	(a) (i)	Find the value of b and the value of c [4 marks]

Do not write outside the box

Do not write outside the box 3 (a) (ii) Express f(x) as a product of three linear factors. [2 marks] Answer Hence express $\frac{f(x)}{16x^2-9}$ in the form 3 (b) $px+q+\frac{r}{mx+n}$ where p, q, r, m and n are constants. [3 marks] Answer

9

4	(h) (ii)	The equation $\sec r = 10r - 5$ can be rearranged into the form	Do not write outside the
-	(5) (11)	$r = 0.1 \sec r + 0.5$	DOX
		x = 0.15 cm x + 0.5	
		Use the iterative formula $x_{n+1} = 0.1 \sec x_n + 0.5$	
		with $x_1 = 0.6$ to find the values of x_2 and x_3	
		Give your answers to three decimal places. [2 marks]	
		$r_{-} = r_{-} =$	
		×2 ×3	
4	(c)	Use the mid-ordinate rule with five strips to find an estimate for	
		$\int_{0.7}^{0.7}$	
		$\int_{0.6} \sec x dx$	
		Give your answer to six decimal places.	
		[4 marks]	
		Angwor	10

5	(a)	Show that the binomial expansion of $(1 - px)^{-\frac{1}{2}}$ up to and including the term in x^3 where p is a constant is	b nc b
		$1 + \frac{1}{2}px + \frac{3}{8}p^2x^2 + \frac{5}{16}p^3x^3$	
		[2 m	arks]
5	(b)	Find the binomial expansion of $\sqrt{(4+nr)}$ up to and including the form in r^3	
5	(D)	Give all numerical coefficients as simplified fractions	
		[3 m	arks]
		Answer	

5 (c) For particular values of
$$p$$
 the binomial expansion up to and including the term in x^3
 $\frac{3}{4}px + \sqrt{(4+px)} - 2(1-px)^{-\frac{1}{2}} = -x^2 + qx^3$
where q is rational.
5 (c) (i) Show that $p - \pm \frac{8}{7}$
[4 marks]

Do not write outside the box

	Δηςωοτ	
6 (c)	The normal to C at the point P intersects the coordinate axes at A and B	
.,	·	
	Find the exact value of the finite area OAB	
	Find the exact value of the finite area OAB	
	Find the exact value of the finite area <i>OAB</i> Give your answer in the form $n(a+\ln r)^2$ where $n = a$ and r are constants	
	Find the exact value of the finite area <i>OAB</i> Give your answer in the form $p(q+\ln r)^2$ where p, q and r are constants	5.
	Find the exact value of the finite area <i>OAB</i> Give your answer in the form $p(q+\ln r)^2$ where p , q and r are constants	5. [3 marks]
	Find the exact value of the finite area <i>OAB</i> Give your answer in the form $p(q+\ln r)^2$ where p , q and r are constants	5. [3 marks]
	Find the exact value of the finite area <i>OAB</i> Give your answer in the form $p(q+\ln r)^2$ where p , q and r are constants	5. [3 marks]
	Find the exact value of the finite area <i>OAB</i> Give your answer in the form $p(q+\ln r)^2$ where p , q and r are constants	5. [3 marks]
	Find the exact value of the finite area <i>OAB</i> Give your answer in the form $p(q+\ln r)^2$ where p , q and r are constants	s. [3 marks]
	Find the exact value of the finite area <i>OAB</i> Give your answer in the form $p(q+\ln r)^2$ where p , q and r are constants	5. [3 marks]
	Find the exact value of the finite area <i>OAB</i> Give your answer in the form $p(q+\ln r)^2$ where p , q and r are constants	5. [3 marks]
	Find the exact value of the finite area <i>OAB</i> Give your answer in the form $p(q+\ln r)^2$ where p , q and r are constants	5. [3 marks]
	Find the exact value of the finite area <i>OAB</i> Give your answer in the form $p(q+\ln r)^2$ where p , q and r are constants	5. [3 marks]
	Find the exact value of the finite area <i>OAB</i> Give your answer in the form $p(q+\ln r)^2$ where p , q and r are constants	5. [3 marks]
	Find the exact value of the finite area <i>OAB</i> Give your answer in the form $p(q+\ln r)^2$ where p , q and r are constants	5. [3 marks]
	Find the exact value of the finite area <i>OAB</i> Give your answer in the form $p(q+\ln r)^2$ where p , q and r are constants	5. [3 marks]
	Find the exact value of the finite area <i>OAB</i> Give your answer in the form $p(q+\ln r)^2$ where p , q and r are constants	5. [3 marks]
	Find the exact value of the finite area <i>OAB</i> Give your answer in the form $p(q+\ln r)^2$ where p , q and r are constants	5. [3 marks]
	Find the exact value of the finite area <i>OAB</i> Give your answer in the form $p(q+\ln r)^2$ where p , q and r are constants	5. [3 marks]
	Find the exact value of the finite area <i>OAB</i> Give your answer in the form $p(q+\ln r)^2$ where p, q and r are constants	5. [3 marks]
	Find the exact value of the finite area <i>OAB</i> Give your answer in the form $p(q+\ln r)^2$ where p , q and r are constants	5. [3 marks]
	Find the exact value of the finite area <i>OAB</i> Give your answer in the form $p(q+\ln r)^2$ where p , q and r are constants	5. [3 marks]
	Find the exact value of the finite area OAB Give your answer in the form $p(q+\ln r)^2$ where p, q and r are constants	5. [3 marks]
	Find the exact value of the finite area OAB Give your answer in the form $p(q+\ln r)^2$ where p, q and r are constants	5. [3 marks]
	Find the exact value of the finite area <i>OAB</i> Give your answer in the form $p(q+\ln r)^2$ where p , q and r are constants	5. [3 marks]
	Find the exact value of the finite area <i>OAB</i> Give your answer in the form $p(q+\ln r)^2$ where p , q and r are constants	5. [3 marks]
	Find the exact value of the finite area <i>OAB</i> Give your answer in the form $p(q+\ln r)^2$ where p, q and r are constants	5. [3 marks]
	Find the exact value of the finite area OAB Give your answer in the form $p(q+\ln r)^2$ where p, q and r are constants	5. [3 marks]
	Find the exact value of the finite area OAB Give your answer in the form $p(q+\ln r)^2$ where p, q and r are constants	5. [3 marks]
	Find the exact value of the finite area OAB Give your answer in the form $p(q+\ln r)^2$ where p, q and r are constants 	5. [3 marks]
	Find the exact value of the finite area OAB Give your answer in the form $p(q+\ln r)^2$ where p , q and r are constants 	5. [3 marks]
	Find the exact value of the finite area OAB Give your answer in the form $p(q+\ln r)^2$ where p, q and r are constants	5. [3 marks]

Turn over ►

11

7		The coordinates of the points A and B are $(1, 5, -3)$ and $(-2, 3, 4)$ respect	Do no outsid bo	ot write ide the box
		The line <i>l</i> has equation $\mathbf{r} = \begin{bmatrix} 4 \\ -1 \\ c \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ -2 \\ -3 \end{bmatrix}$ where <i>c</i> is a constant.		
7	(a) (i)	Find the vector \overrightarrow{AB}	[1 mark]	
		Answer		
7	(a) (ii)	Find $\begin{vmatrix} \overrightarrow{AB} \end{vmatrix}$	[2 marks]	
		Answer		
7	(a) (iii)	Calculate the acute angle between <i>AB</i> and the line <i>l</i> , giving your answer to nearest 0.1°	the [3 marks]	
		Answer		

7	(a) (iv)	The line AB intersects the line l	
		Find the value of <i>c</i>	[3 marks]
		Answer	
7	(b) (i)	Find the shortest distance from l to the origin.	[4 marks]
		Answer	
7	(b) (ii)	Explain which of the line l or the line AB , is nearest to the origin.	[2 marks]

15

Do not write outside the box

8	A curve has equation $x + y = (x - 2y)^2$	Do not write outside the box
	Find the equation of the tangent to the curve at $(2, 2)$	
	Give your answer in the form $y = mx + c$ where <i>m</i> and <i>c</i> are rational numbers. [6 marks]	
	Answer	6

9	(a)	Describe a single geometrical transformation that maps the graph of $y = \ln x$ onto the graph of $y = \ln(2x)$ [2 marks]	Do not write outside the box
9	(b)	The region bounded by the curve $y = \ln(2x)$, the line $x = 4$ and the <i>x</i> -axis from $x = 0.5$ to $x = 4$ is rotated through 2π radians about the <i>x</i> -axis to form a solid.	
		Find the value of the volume of the solid generated, giving your answer in an exact form. [9 marks]	
		Answer	11

1 8		

$$\frac{dy}{dx} = b(3a-2y)(a-y)$$
where *a* and *b* are positive constants.
Solve the differential equation such that $y = 0$ when $x = 0$
Give your answer in the form $y = f(x)$
[10 marks]
[1

10 It is given that

	Do not write outside the box
Answer	10

 $\int 4\cos^2\theta \,\mathrm{d}\theta$ 11 (a) Find [2 marks] Answer___ 11 (b) Use the substitution $t = \sin x$ to find $\int_{0}^{\frac{\pi}{6}} \frac{\sin 2x}{3 + \cos^2 x} \, \mathrm{d}x$ giving your answer in the form $\ln\left(\frac{a}{b}\right)$ where *a* and *b* are integers. [7 marks]

Do not write outside the

box

	Do not write
	outside the box
A mar	9
Answer	

12	A curve C is defined by the parametric equations		Do not write outside the box
	$x = 2\cos\theta$ and $y = 3\sin\theta$ for $0 \le \theta \le 2\pi$		
12 (a)	Find a Cartesian equation of <i>C</i>	[2 marks]	
	Answer		
12 (b)	Find the equation of the tangent to the curve at the point where $\theta = \frac{\pi}{6}$ Give your answer in the form $y + ax + b = 0$ where <i>a</i> and <i>b</i> are constants. You are given $\sin\left(\frac{\pi}{c}\right) = \frac{1}{2}$ and $\cos\left(\frac{\pi}{c}\right) = \frac{\sqrt{3}}{2}$		
		[4 marks]	
	Answer		

istant in four distinct points only if $k^2 < 3$	[5 marks]
	[e marke]
END OF QUESTIONS	

12 (c)

Do not write outside the box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

IB/G/Jan23/MA03