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• For this paper you must have the Oxford International AQA Booklet  

of Formulae and Statistical Tables (enclosed). 
• You may use a graphical calculator. 
 
Instructions 
• Use black ink or black ball-point pen.  Pencil should only be used for drawing. 
• Fill in the boxes at the top of this page. 
• Answer all questions. 
• You must answer the questions in the spaces provided.  Do not write outside 

the box around each page or on blank pages. 
• If you need extra space for your answer(s), use the lined pages at the end of  

this book.  Write the question number against your answer(s). 
• Do all rough work in this book.  Cross through any work you do not want to be 

marked. 
 
Information 
• The marks for questions are shown in brackets. 
• The maximum mark for this paper is 120. 
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• Unless stated otherwise, you may quote formulae, without proof,  

from the booklet. 
• Show all necessary working; otherwise marks may be lost.
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Do not write 
outside the  

box Answer all questions in the spaces provided. 

 
1   A curve  C1   has polar equation 

 
= + sinr θ6 2      where  πθ≤ ≤0 2  

 
A circle  C2   has polar equation  =r 3  

 
 

1 (a)  Show that  C1   and  C2   do not intersect.  
[1 mark]  

 

  

  

 
 

1 (b)  Show that the area of the region bounded by  C1   and  C2   is π29  
  [4 marks] 

  

  

  

  

  

  

  

  

  

  

  

  

  

 
 

  

 
5 
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Do not write 
outside the  

box 2   Prove by induction that, for all integers  n ≥ 1 
 

=
+

n
n n
n n

− −   
   − −   

3 1 1 4
16 5 16 4 1

 

 [5 marks]  
 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 
5 
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Do not write 
outside the  

box 3   Use integration by parts to show that 
 

1tan   dx x x−∫
3

1
2  =   

π +5
1 3

6
 

 [5 marks]  
 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 
  

 
5 
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outside the  

box 4 
  

The position vectors of three points are 
 

= 
 
 
 
  

u 
4
3
8

             = n
n

− 
 
 
  

v 
1

             = 
n

 
 − 
  

w 
5
1   

 
where  n   is a constant. 
 
The vectors  u ,  v   and  w   are coplanar. 

 
 

4 (a)  Use a scalar triple product to find the two values of  n  
 [3 marks]  

 

  

  

  

  

  

  

  

  

 
Answer  

 
 

4 (b)  For each value of  n   found in part (a), express  u   in terms of  v   and  w  
  [2 marks] 

  

  

  

  

  

  

 
Answer  

  

 
5 
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Do not write 
outside the  

box 5 
  

A curve has Cartesian equation  
 

( )( )= +y x x24 2 2 3     
 

Find the polar equation of the curve in the form 

( )
=

f cos
kr
θ

 

where k  is a constant and  r > 0  
 [4 marks] 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

Answer 
 

  

 
4 
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Do not write 
outside the  

box 6   By using an integrating factor, find the general solution of the differential equation 
 

( )d tan t
d

+ = any x y x
x

3      where   πx≤ <0
2

  

 [6 marks] 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

Answer 
 

  

 
6 
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Do not write 
outside the  

box 7 
  

The quartic equation  

+ + =z pz q4 0  

where  p   and  q   are constants, has roots  ,  ,  α β γ  and  δ  
 
 

7 (a) 
 

Write down the value of  + + +α β γ δ  
 [1 mark] 

  

 
Answer  

 
 

7 (b)  It is given that  i+ + =α β γ −2   and that both  p   and  q   are real. 
 

7 (b) (i) Find the value of  p 
 [4 marks]  

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 
p =  
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Do not write 
outside the  

box 7 (b) (ii) Show that  + + + =α β γ δ −4 4 4 4 220  
 [3 marks]  

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 
8 
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Do not write 
outside the  

box 8   The matrix  M   is defined as  

=
c 

 
 
  

−
M

1 0
1 2 1
2 2 3

 

where  c   is a constant. 
 

 
 

8 (a) (i) Find the value of  c   for which  M   is a singular matrix. 
 [2 marks]  

 

  

  

  

  

 
c =  

 
 

8 (a) (ii) Given that  M   is a non-singular matrix, find  M 1   in terms of  c  
 [5 marks]  
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Do not write 
outside the  

box 

  

  

  

  

  

 

Answer 

 

 
 

8 (b)  Given that  =λ 1  is the only real eigenvalue of  M   find all the possible values of  c  
 [5 marks]  

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 
Answer  

  

 
12 
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Do not write 
outside the  

box 9   The differential equation 

d+ +d
d d

=y y y x
x x

2

2 2 2 2  

such that  =y −2   and  
d =
d
y
x

2   when  =x 0   has the solution  ( )= fy x  

 
 

9 (a)  Find  ( )f x  
[8 marks]  
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Do not write 
outside the  

box 

  

  

  

  

  

  

  

  

 ( )f x =   

 
 

9 (b)  Hence, or otherwise, find the Maclaurin series expansion of  ( )f x   in ascending powers 

of  x   up to and including the term in  x4  
 [3 marks]  

 

  

  

  

  

  

  

  

  

  

  

  

 

Answer 
 

  

 
11 
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Do not write 
outside the  

box 10 (a)  Use the definitions of  coshθ   and  sinhθ   in terms of  eθ   to show that 

( )cosh cosh sinh sinh cos +h+ =x y x y x y     

[4 marks]  
 

  

  

  

  

  

  

  

  

  

  

  

 
 
10 (b) 

 
A curve has equation 

( ) +sinh o= c+ shy x x x−8 ln4 4 7  

Prove that the curve has exactly one stationary point  P  and show that  
the  y-coordinate of  P  can be expressed in the form    +u v wln   where  u ,  v   and  w    
are prime numbers. 

[9 marks]  
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13 
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Do not write 
outside the  

box 

11 

  

The plane  Π1   has vector equation  = .
 
 
 
 − 

r 
1
4 5
3

 

 
The plane  Π2   has Cartesian equation  + =x y z−3 3 3  

 
 
11 (a) (i) Write down a vector equation of  Π2   in the form  = dr . n  

[1 mark] 
 

Answer 

 

 
 
11 (a) (ii) Find the acute angle between the planes  Π1   and  Π2   giving your answer to the 

nearest 0.1° 
[4 marks]  

 

  

  

  

  

  

  

  

  

  

 
  

  

  

 
Answer  
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Do not write 
outside the  

box 11 (b)  The line of intersection of  Π1   and  Π2   is  L 

11 (b) (i) Find the direction ratios of the line  L 
[2 marks]  

 

  

  

  

 
Answer  

 
11 (b) (ii) Find Cartesian equations for the line  L 

[3 marks]  
 

  

  

  

  

  

  

  

 

Answer 
 

 
 11 (c)  The plane  Π3   has Cartesian equation  + =x y 5    

 
Using your answer to part (b)(ii) or otherwise, find the coordinates of the point of 
intersection of  Π1 ,  Π2   and  Π3  

[2 marks] 
  

  

  

  

 
Answer  
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Do not write 
outside the  

box 12 (a)  For real constants  m   and  n   given that, in exponential form  
 

 
i + i =  θm n r e      and      

i + i =  n m r e  
 

express    in terms of  θ   and  π  
 [2 marks]  

 
 

 

  

  

  

  

  

 
=   

 
 
12 (b)  In the Argand diagram opposite, the points  P,  Q  and  R  represent the roots of the  

equation 
 = + iz a b3  

where  a   and  b   are real constants. 
 
 
12 (b) (i) Find, in terms of  a   and  b ,  the radius of the circle on which  P,  Q  and  R  lie. 

[2 marks]  
 

 
 

  

  

  

  

  

 
Answer  
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Do not write 
outside the  

box 12 (b) (ii) On the Argand diagram below, mark and label the approximate position of the  
point  T  which represents the root of the equation 
 

 = + iz b a−3   

that is closest to the point  P  
[1 mark] 

   

 
 
12 (c) 

 
In the case where 
 
    area of triangle  OTP = 16 

   and =b a 3   where  a > 0  
 
find, in exponential form, the complex number which represents the midpoint 
of the chord  TP  

[6 marks]  
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Answer  

  

 
11 
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Turn over for the next question 
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Do not write 
outside the  

box 
13 (a) 

 
Given that  sinhu

x
−  =  
 

1 1
  show that  

+
d
d

=u
x x x

−
2

1

1
 

[3 marks]  
 

  

  

  

  

  

  

  

  

  

  

  

 
 

13 (b)  A curve  C  has equation  =y xln   where  x > 0   

The length of the arc of  C  between the points on the curve where  =x 7
24

  and  =x 12
5

 

is equal to  s 
 
 
Using the result in part (a) show that  = +s p qln   where  p   and  q   are rational. 

[7 marks]  
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Do not write 
outside the  

box 14 (a)  By applying de Moivre’s theorem to  ( ) cos i s+ inθ θ 4  , express  cos θ4   in terms             
of sin θ  

 [4 marks]  
 

  

  

  

  

  

  

  

  

  

  

 
Answer  

 
 

14 (b)  Hence, show that the equation  cos co= sθ θπ − 
 

4 3
2

  can be written in the form 

    + + +sin sin sin sin + =θ θ a θ b θ c4 3 2  8 4 0  

 
where  a ,  b   and  c   are integers. 

[4 marks]  
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box 

  

  

  

  

  

 
 
14 (c)  Hence, prove that 

=π π πsin sin sin+ +     
     
     

5 1 3
14 14 2 14

 

[5 marks]  
 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 
END  OF  QUESTIONS 
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There are no questions printed on this page 
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Question 
number 

Additional page, if required. 
Write the question numbers in the left-hand margin. 
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