

Please write clearly ir	ו block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	
	I declare this is my own work.

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS

(9665/FM03) Unit FP2 Pure Mathematics

Thursday 12 January 2023 07:00 GMT Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
TOTAL	

	Answer all questions in the spaces provided.		Do not outsid bo
1	A curve C_1 has polar equation		
	$r = 6 + 2\sin\theta$ where $0 \le \theta \le 2\pi$		
	A circle C_2 has polar equation $r = 3$		
1 (a)	Show that C_1 and C_2 do not intersect.	[1 mark]	
1 (b)	Show that the area of the region bounded by $\ C_1$ and $\ C_2$ is 29 π	[4 marks]	
			5

IB/G/Jan23/FM03

2	Prove by induction that, for all integers $n \ge 1$	
	$\begin{bmatrix} -3 & 1 \\ -16 & 5 \end{bmatrix}^n = \begin{bmatrix} 1-4n & n \\ -16n & 4n+1 \end{bmatrix}$	
	[5 marks]	

Turn over ►

Use integration by parts to show that		
	$\int_{-1}^{\sqrt{3}} 2x \tan^{-1} x dx = \frac{5\pi}{2} + 1 - \sqrt{3}$	
	J ₁ 6	[5 marks

		Do not write
4	The position vectors of three points are	outside the box
	$\mathbf{u} = \begin{bmatrix} 4\\3\\8 \end{bmatrix} \qquad \mathbf{v} = \begin{bmatrix} -1\\n\\n \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} 5\\-1\\n \end{bmatrix}$	
	where n is a constant.	
	The vectors u , v and w are coplanar.	
4 (a)	Use a scalar triple product to find the two values of <i>n</i> [3 marks]	
	Answer	
4 (b)	For each value of <i>n</i> found in part (a) , express u in terms of v and w [2 marks]	
	Answer	

A curve has Cartesian equation

4

$$4y^2 = (2+x)(2-3x)$$
Find the polar equation of the curve in the form
$$r = \frac{k}{f(\cos\theta)}$$
where k is a constant and r > 0
[4 marks]
[4 marks]
[5 ma

5

6	By using an integrating factor, find the general solution of the differential equation			On Do not write outside the box	
		$\frac{\mathrm{d}y}{\mathrm{d}x} + (\tan x)y = \tan^3 x$	where $0 \le x <$	$\leq \frac{\pi}{2}$	
				_	[6 marks]
	Answer_				6
				т	urn over ►

IB/G/Jan23/FM03

7		The quartic equation	Do not wr outside th box
		$z^4 + pz + q = 0$	
		where p and q are constants, has roots α , β , γ and δ	
7	(a)	Write down the value of $\alpha + \beta + \gamma + \delta$ [1 mark]	
		Answer	
7	(b)	It is given that $\alpha + \beta + \gamma = 2 - i$ and that both p and q are real.	
7	(b) (i)	Find the value of <i>p</i> [4 marks]	
		<i>p</i> =	

7	(b) (ii)	Show that $\alpha^4 + \beta^4 + \gamma^4 + \delta^4 = -220$	Do not write outside the box
		[3 marks]	
			8

	Do not write outside the
The matrix M is defined as	box
$\mathbf{M} = \begin{bmatrix} 1 & 0 & -c \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$	
where c is a constant.	
Find the value of c for which M is a singular matrix. [2 marks]	
<i>c</i> =	
Given that M is a non-singular matrix, find \mathbf{M}^{-1} in terms of <i>c</i>	
[5 marks]	

8 (a) (i)

8 (a) (ii)

1	- 1
1	- 1

	Answer
8 (b)	Given that $\lambda = 1$ is the only real eigenvalue of M find all the possible values of <i>c</i> [5 marks]
	Answer

Turn over ►

The differential equation 9 $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = 2x$ such that y = -2 and $\frac{dy}{dx} = 2$ when x = 0 has the solution y = f(x)Find f(x)9 (a) [8 marks]

Do not write
outside the
box

	$\mathbf{f}(x) = \underline{\qquad}$
0 (h)	
(a) e	Hence, or otherwise, find the Maclaurin series expansion of $I(x)$ in ascending powers of x up to and including the term in x^4
	[3 marks]
	Answer

Turn over ►

Use the definitions of $\cosh\theta$ and $\sinh\theta$ in terms of e^{θ} to show that 10 (a) $\cosh x \cosh y + \sinh x \sinh y = \cosh(x+y)$ [4 marks] 10 (b) A curve has equation $y = 8\sinh(x + \ln 4) + 4\cosh x - 7x$ Prove that the curve has exactly one stationary point P and show that the y-coordinate of P can be expressed in the form $u + v \ln w$ where u, v and w are prime numbers. [9 marks]

IB/G/Jan23/FM03

Do not write outside the

box

	Do not write outside the
	 box
_	
	13

11	(a) (i)	The plane Π_1 has vector equation $\mathbf{r} \cdot \begin{bmatrix} 1 \\ 4 \\ -3 \end{bmatrix} = 5$ The plane Π_2 has Cartesian equation $x - 3y + 3z = 3$ Write down a vector equation of Π_2 in the form $\mathbf{r} \cdot \mathbf{n} = d$ [1 mark]	Do not write outside the box
		Answer	
11	(a) (ii)	Find the acute angle between the planes $\Pi_{\rm 1}$ and $\Pi_{\rm 2}$ giving your answer to the nearest 0.1°	
		[4 marks]	
		Answer	
]

		Answer
11	(b) (ii)	Find Cartesian equations for the line <i>L</i> [3 marks]
		Answer
11	(c)	The plane Π_3 has Cartesian equation $x + y = 5$
		Using your answer to part (b)(ii) or otherwise, find the coordinates of the point of intersection of Π and Π
		[2 marks]
		Answer
		Turn over I

11 (b)

12

The line of intersection of $~\Pi_{\rm 1}~$ and $~\Pi_{\rm 2}~$ is $~{\it L}$

11 (b) (i) Find the direction ratios of the line *L*

Do not write
outside the
box

[2 marks]

12	(a)	For real constants m and n given that, in exponential form
		$m + in = r e^{i\theta}$ and $-n + im = r e^{i\phi}$
		express ϕ in terms of θ and π [2 marks]
		$\phi = $
12	(b)	In the Argand diagram opposite, the points <i>P</i> , <i>Q</i> and <i>R</i> represent the roots of the equation $z^3 = a + ib$
		where a and b are real constants.
12	(b) (i)	Find, in terms of a and b , the radius of the circle on which P , Q and R lie. [2 marks]
		Answer

Do not write
outside the
box

Turn over ►

Answer	 			
 Answer				
 Answer	 			
Answer	 		 	
Answer	 			
Answer				
Answer	 			
Answer	 			
Answer	 			
Answer				
Answer	 			
Answer	 		 	
		Answer		

IB/G/Jan23/FM03

13 (a) Given that
$$u = \sinh^{-1}\left(\frac{1}{x}\right)$$
 show that $\frac{du}{dx} = -\frac{1}{x\sqrt{1+x^2}}$ [3 marks]

14 (a)	By applying de Moivre's theorem to $(\cos \theta + i \sin \theta)^4$, express $\cos 4\theta$ in terms	Do not write outside the box
	of $\sin \theta$ [4 marks]	
	Answer	
	(π)	
14 (b)	Hence, show that the equation $\cos 4\theta = \cos\left(\frac{\pi}{2} - 3\theta\right)$ can be written in the form	
	$8\sin^4\theta + 4\sin^3\theta + a\sin^2\theta + b\sin\theta + c = 0$	
	where <i>a</i> , <i>b</i> and <i>c</i> are integers. [4 marks]	

14 (c) Hence, prove that

$$sin\left(\frac{\pi}{14}\right) + sin\left(\frac{5\pi}{14}\right) = \frac{1}{2} + sin\left(\frac{3\pi}{14}\right)$$
[5 marks]

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

