

INTERNATIONAL AS MATHEMATICS

MA02

(9660/MA02) Unit PSM1 Pure Mathematics, Statistics and Mechanics

Mark scheme

January 2023

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaqaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

Μ	Mark is for method
m	Mark is dependent on one or more M marks and is for method
Α	Mark is dependent on M or m marks and is for accuracy
В	Mark is independent of M or m marks and is for method and accuracy
E	Mark is for explanation
$\sqrt{\mathbf{or}}$ ft	Follow through from previous incorrect result
CAO	Correct answer only
CSO	Correct solution only
AWFW	Anything which falls within
AWRT	Anything which rounds to
ACF	Any correct form
AG	Answer given
SC	Special case
oe	Or equivalent
A2, 1	2 or 1 (or 0) accuracy marks
– <i>x</i> EE	Deduct <i>x</i> marks for each error
NMS	No method shown
PI	Possibly implied
SCA	Substantially correct approach
sf	Significant figure(s)
dp	Decimal place(s)

Q	Answer	Marks	Comments
1(a)	8.4 [cm]	B1	
		1	

Q	Answer	Marks	Comments
1(b)	$\frac{1}{2} \times 12^{2} \times 0.7 [= 50.4]$ or $\frac{1}{2} \times x^{2} \times 0.7 [= 0.35x^{2}]$	М1	oe PI Correct expression for area of one sector.
	$\frac{1}{2} \times 12^2 \times 0.7 - \frac{1}{2} \times x^2 \times 0.7 [= 35]$ or $50.4 - 0.35x^2 [= 35]$	М1	oe Correct expression for area of region <i>ABCD</i> PI by $x^2 = 44$ or $x = \sqrt{44}$ or $0.35x^2 = 15.4$
	$[x=] 2\sqrt{11}$	A1	CAO
		3	

Question 1 Te	tal 4	
---------------	-------	--

Q	Answer	Marks	Comments
2(a)(i)	$\frac{a-7}{a-5}$ or $\frac{a-1}{a-13}$	M1	oe Correct expression for gradient of radius or tangent.
	$\frac{a-7}{a-5} \times \frac{a-1}{a-13} = -1$ or $\frac{a-7}{a-5} = \frac{13-a}{a-1}$	М1	oe equation relating gradients of tangent and radius.
	$a^2 - 8a + 7 = -a^2 + 18a - 65$	М1	oe equation with fractions and brackets cleared.
	$2a^2 - 26a + 72 = 0$ and $a^2 - 13a + 36 = 0$	A1	AG Must be convincingly shown M1M1M1 not scored scores A0 oe Must have further simplification before required result stated.

Q	Answer	Marks	Comments
2(a)(i) ALT	$\left[QR^{2} = \right] (16 - 8)^{2} + (1 - 7)^{2} [= 100]$ or $\left[QR = \right] \sqrt{(16 - 8)^{2} + (1 - 7)^{2}} [= 10]$	М1	oe Correct use of distance formula to calculate <i>QR</i>
	$(a-5)^{2} + (a-7)^{2} + (13-a)^{2} + (a-1)^{2} [=100]$ or $\sqrt{(a-5)^{2} + (a-7)^{2} + (13-a)^{2} + (a-1)^{2}} [=10]$	М1	oe Use of Pythagoras' Theorem with correct expression for $PR^2 + PQ^2$
	$a^{2} - 10a + 25 + a^{2} - 14a + 49 + 169$ - 26a + a^{2} + a^{2} - 2a + 1 [= 100] or $\sqrt{a^{2} - 10a + 25 + a^{2} - 14a + 49 + 169}$ $\overline{-26a + a^{2} + a^{2} - 2a + 1} [= 10]$	М1	oe Their brackets correctly expanded. Condone one error.
	$4a^2 - 52a + 244 = 100$ or $4a^2 - 52a + 144 = 0$ and $a^2 - 13a + 36 = 0$	A1 4	AG Must be convincingly shown M1M1M1 not scored scores A0 Must have further simplification before required result stated.

Q	Answer	Marks	Comments
2(a)(ii)	<i>a</i> = 9	B1	Condone $a = 4$ given as well PI by correct coordinates of <i>P</i>
	[Gradient $\frac{9-1}{12-16}[=-2]$ or $\frac{9-1}{9-13}[=-2]$]		
	(y-9)=-2(x-12)		Uses their gradient to find equation of
	or (y-1) = -2(x-16)	M1	line ft their <i>a</i>
	or		
	y = -2x + 33		
	2x + y = 33	A1	Correct equation in correct form.
		3	

Q	Answer	Marks	Comments
2(b)	$\left[r^{2}=\right]\left(12-8\right)^{2}+\left(9-7\right)^{2}$	M1	oe PI Follow through their <i>a</i>
	$r^2 = 20$	A1	Condone $r = \sqrt{20}$ or $r = 2\sqrt{5}$
	$(x-11)^{2} + (y - (-3))^{2} = 20$ or $(x-11)^{2} + (y + 3)^{2} = 20$	B2ft	B1 for each correct bracketed term in an equation set equal to 20 ft their r^2 Equation must be in the correct form.
		4	

		Question 2 Total	11	
--	--	------------------	----	--

Q	Answer	Marks	Comments
3(a)	$\begin{bmatrix} A = \end{bmatrix} 5$	B1	
		1	

Q	Answer	Marks	Comments
3(b)	[k=]2	B1	
		1	

Q	Answer	Marks	Comments
3(c)	$\begin{bmatrix} 4 = 5 \times 1.5^{3b} + 2 \end{bmatrix}$ $3b = \log_{1.5} (0.4)$ or $3b = \frac{\log_a (0.4)}{\log_a (1.5)}$ or $b = \frac{\log_a (0.4)}{\log_a 3.375}$ or $b = \frac{\log_a (\sqrt[3]{0.4})}{\log_a 1.5} = \frac{\log_a 0.7368}{\log_a 1.5}$ or $b = \log_{1.5} (\sqrt[3]{0.4}) = \log_{1.5} 0.7368$	М1	oe Expression for $3b$ or b in terms of logarithms with $A = 5$ substituted ft their value of A from part (a) PI by $3b = -2.259(851)$ rounded or truncated to 3 dp Condone $3b = -2.26$
	<i>b</i> = -0.753	A1	CAO
		2	

Question 3 Tot	I 4	
----------------	-----	--

Q	Answer	Marks	Comments
4	$\frac{18}{\sin 30^{\circ}} = \frac{EG}{\frac{7}{12}}$	M1	oe Correct use of Sine Rule.
	[<i>EG</i> =]21 [cm]	A1	ΡΙ CAO
	$\frac{1}{2} \times 21 \times 32 \times \sin\beta [= 210]$	М1	Correct use of $A = \frac{1}{2}ab\sin c$ using their length of <i>EG</i>
	$\sin\beta = \frac{5}{8} [= 0.625]$ or $[\beta =]38.6(8218)°$	A1	Correct rearrangement to find value for $\sin\beta$ Fraction simplified or unsimplified. PI by $38.6(8218)°$
	$[\beta =]180^{\circ} - 38.6(8218)^{\circ}$ or $[\beta =]180^{\circ} - \sin^{-1}\left(\frac{5}{8}\right)$	m1	Dependent on 2^{nd} M1 ft their acute angle or their $\frac{5}{8}$ PI by correct final answer.
	[β=]141°	A1	CAO Condone omission of units. AWRT 141°
		6	

	Question 4 Total	6	
--	------------------	---	--

Q	Answer	Marks	Comments
5(a)	$2 = \log_7 49$ or $1 = \log_7 7$	B1	Pl i Seen or used at any stage.
	$\log_7 \left(2x-5\right)^2$	М1	A law of logs used. Must be applied to at least one term involving x PI by $\frac{(2x-5)^2}{2x+3}$ [=49]
	$\log_{7} \frac{(2x-5)^{2}}{2x+3} = 2$ or $\log_{7} \frac{(2x-5)^{2}}{2x+3} = \log_{7} 49$ or $\log_{7} (2x-5)^{2} = \log_{7} 49 (2x+3)$	М1	oe A second law of logs used leading to a correct equation involving logs. Must be applied to at least one term involving x Condone $\frac{(2x-5)^2}{2x+3} = 49$ for B1M1M1
	$4x^{2} - 20x + 25 = 49(2x + 3)$ or $4x^{2} - 20x + 25 = 98x + 147$ or $4x^{2} - 118x - 122 = 0$ and $2x^{2} - 59x - 61 = 0$	А1	CSO AG Logs cleared and further manipulation seen before required quadratic equation stated.
		4	

Q	Answer	Marks	Comments
5(b)	(2x-61)(x+1) (= 0) or $x = \frac{-(-59) \pm \sqrt{(-59)^2 - 4 \times 2 \times (-61)}}{2 \times 2}$	М1	Or correct use of completing the square. Correct attempt to solve the quadratic equation PI by $x = \frac{61}{2}$ and $x = -1$ seen
	$x = \frac{61}{2}$ or 30.5	A1	CSO M1 not scored award M0A0
		2	

Question 5 Tot	6	
----------------	---	--

Q	Answer	Marks	Comments
6(a)	$\frac{33+16(1-\sin^2 x)}{7+4\sin x}$ or $\frac{49-16\sin^2 x}{7+4\sin x}$	М1	Use of $\sin^2 x + \cos^2 x = 1$
	$\frac{(7 - 4\sin x)(7 + 4\sin x)}{7 + 4\sin x}$ or $\frac{(49 - 16\sin^2 x)(7 - 4\sin x)}{49 - 16\sin^2 x}$	M1	Numerator factorised or numerator and denominator multiplied by $7 - 4\sin x$ and denominator expanded.
	$7-4\sin x$	A1	CSO
		3	

Q	Answer	Marks	Comments
6(b)(i)	$7 - 4 \times -1$ (oe) and 11	B1	
		1	

Q	Answer	Marks	Comments
6(b)(ii)	[<i>x</i> =]270°	B1	
		1	

Q	Answer	Marks	Comments
6(c)	$7 - 4\sin 2\theta = 6$ $\Rightarrow \sin 2\theta = \frac{1}{4}$	М1	For use of part (a) ft their $p - q \sin 2\theta$ from part (a) with 2θ substituted. Condone <i>x</i> or $2x$ used instead of 2θ
	$[2\theta =]14.4(77512)^{\circ}$ or $[2\theta =]165.5(22487)^{\circ}$	m1	Anything that rounds or truncates correctly to 1dp
	$\left[\theta= ight]$ 7.2°, 82.8°	A2,1	If more accurate value(s) seen but not rounded to 1 dp scores A1: $\theta = 7.23875^{\circ}$ $\theta = 82.76124^{\circ}$ Ignore values outside the given interval. If both correct answers given deduct 1 mark for each extra incorrect value in the given interval to a minimum of A0 If one correct answer only given then A1 if there is no more than one incorrect answer in the given interval. Condone 7.3 for 7.2 Both correct answers stated with M0 scored scores M0m0A0A0
		4	

|--|

Q	Answer	Marks	Comments
7(a)	79.24	B1	Accept $\frac{1981}{25}$ Condone 79.2 as final answer if 79.24 seen,
		1	

Q	Answer	Marks	Comments
7(b)	$12^2 \times 0.573^2$	М1	PI by 47.2 Condone $12^2 \times 0.573 = 82.512$
	=47.3	A1	AWRT
		2	

Question 7 Total	3	
------------------	---	--

Q	Answer	Marks	Comments
8(a)	<u>11</u> 90	B1	oe or AWRT 0.122
		1	

Q	Answer	Marks	Comments
8(b)	$\frac{1}{20}$	B1	oe
		1	

Q	Answer	Marks	Comments
8(c)	$\frac{1}{62}$	B1	oe or AWRT 0.016
		1	

Q	Answer	Marks	Comments
8(d)	$P(A) = \frac{112}{180} \left[= \frac{28}{45} = 0.62(2) \right]$ or $P(B) = \frac{96}{180} \left[= \frac{8}{15} = 0.53(3) \right]$	B1	P(<i>A</i>) or P(<i>B</i>) correct oe PI in subsequent working
	$P(A) \times P(B) = \frac{224}{675} [= 0.33(185)]$	B1	oe AWRT 0.33
	$P(A \cap B) = \frac{14}{45} [= 0.31(111)]$	B1	oe
	$P(A) \times P(B) = \frac{224}{675} \neq \frac{14}{45} = P(A \cap B)$ So not independent.	E1ft	oe Compares their $P(A) \times P(B)$ and $P(A \cap B)$ and makes correct conclusion for their values.
		4	

Q	Answer	Marks	Comments
8(d) ALT	$P(A) = \frac{28}{45} \left[= 0.62(2) \right]$	B1	oe
	$P(A \mid B) = \frac{56}{96} \left[= \frac{7}{12} = 0.583(3) \right]$	B2	CAO oe
	$P(A \mid B) = \frac{7}{12} \neq P(A) = \frac{28}{45}$ So not independent.	E1ft	oe Compares their $P(A)$ and $P(A B)$ and makes correct conclusion for their values.
		4	

	7	Question 8 Total
--	---	------------------

Q	Answer	Marks	Comments
9(a)	$\left[E(X)=\right] p$	B1	PI Accept $0(1-p) + 1 \times p$
	$\left[E(X^2)=\right] 0^2 (1-p) + 1^2 \times p$	M1	Correct expression seen for $E(X^2)$ oe
	$\left[\operatorname{Var}(X)=\right] p-p^2=p(1-p)$	A1	AG must see $p - p^2$ or $np(1-p)$ with $n = 1$
		3	

Q	Answer	Marks	Comments
9(b)	Bernoulli distribution with probability p	B1	Accept $B(1, p)$
		1	

Q	Answer	Marks	Comments
9(c)	[p(1-p)=0.2176] $p^2-p+0.2176=0$	М1	Forms correct equation and expands brackets oe PI by 0.68 or 0.32 seen.
	[<i>p</i> =] 0.68	A1	Accept 17/25 oe If 0.32 oe seen it must be rejected.
		2	

Question 9 Total	6	
------------------	---	--

10 $[Var(X_2)=] 0.7569$ B1 PI Accept 0.87^2 $[Var(X_3)=] 0.48$ B1 PI Accept $7.0336 - 2.56^2$ $\left[Var\left(\sum_{i=1}^{3} X_i\right)=Var(X_1)+Var(X_2)+Var(X_3)\right]$ M1 PI Attempts to add their three variances. $[Var\left(\sum_{i=1}^{3} X_i\right)=1.7460$ M1 PI Attempts to add their three	Q	Answer	Marks	Comments
$\begin{bmatrix} \operatorname{Var}(X_3) = \end{bmatrix} 0.48 \\ \begin{bmatrix} \operatorname{Var}\left(\sum_{i=1}^{3} X_i\right) = \operatorname{Var}(X_1) + \operatorname{Var}(X_2) + \operatorname{Var}(X_3) \end{bmatrix} \\ \begin{bmatrix} \operatorname{N1} & PI \\ \operatorname{Attempts to add their three} \\ \operatorname{Attempts to add their three} \\ \operatorname{Variances.} \end{bmatrix}$	10	$\left[\operatorname{Var}\left(X_{2}\right)=\right]0.7569$	B1	
0.51+0.7569+0.48 Attempts to add their three variances.		$\left[Var(X_3) = \right] 0.48$	B1	
$\left[\sqrt{2} \left(\sum_{i=1}^{3} V_{i} \right) - \right] = \frac{1}{2} \frac{7460}{12}$			М1	Attempts to add their three
$\begin{bmatrix} \sqrt{\alpha} \left(\sum_{i=1}^{N} A_i \right)^{-} \end{bmatrix}^{1.7409} $ A1		$\left[\operatorname{Var}\left(\sum_{i=1}^{3} X_{i}\right)\right] = \left] 1.7469\right]$	A1	
4			4	

Question 10 To	I 4	
----------------	-----	--

Q	Answer	Marks	Comments
11(a)(i)	Friction = $0.15g$ or 1.47	B1	Can be implied.
	Equation of motion for <i>P</i> 0.2g - T = 0.2a Equation of motion for <i>Q</i> T - 0.15g = a	M1 A1	ft their friction. Forms both correct equations of motion for <i>P</i> and <i>Q</i> Condone <i>F</i> or μR for 0.15 <i>g</i> M1: One correct equation. M1A1: Both correct equations. PI by $0.2g - (0.15g + a) = 0.2a$ oe
	$[a =] 0.41 \ [m s^{-2}]$	A1	
		4	

Q	Answer	Marks	Comments
11(a)(ii)	$v^2 = 2 \times 0.41 \times 0.4$ or $v = \sqrt{2 \times 0.41 \times 0.4}$	M1	Suitable calculation for v^2 or v If two constant acceleration formulae used then must be a complete method. ft their acceleration from part (a)(i) .
	$[v=] 0.57 \left[m s^{-1} \right]$	A1	AWRT $v = 0.57 [m s^{-1}]$
		2	

Q	Answer	Marks	Comments
11(b)	The tension in the string is the same either side of the peg.	E1	Any suitable explanation eg The magnitude of the force the string exerts on <i>P</i> and <i>Q</i> is the same.
		1	

Question 11 Tot	7	
-----------------	---	--

Q	Answer	Marks	Comments
12(a)	$[s=] 0.5 \times 8 \times 10^2$	M1	If two constant acceleration formulae used then must be a complete method.
	[<i>s</i> =] 400 [m]	A1	САО
		2	

Q	Answer	Marks	Comments
12(b)	$\left[p = \frac{(-1) - (-5)}{(30) - (10)} = \right] 0.2$	B1	CAO
		1	

Q	Answer	Marks	Comments
12(c)(i)	v =]80 [at t = 10]	B1	Speed at the end of first section of motion. PI
	$\left[v = \int (0.2t - 7)dt = \right] 0.1t^2 - 7t + c$	M1	Correct integration. ft their 0.2 Condone omission of $'+c'$
	$\begin{bmatrix} 80 = 0.1 \times 10^2 - 7 \times 10 + c \\ c = 140 \end{bmatrix}$ $[v =]0.1t^2 - 7t + 140$	A1	CAO
		3	

Q	Answer	Marks	Comments
12(c)(ii)	$[v=] 0.1(30)^2 - 7(30) + 140$ = 20 $[ms^{-1}]$	B1	<pre>t = 30 substituted into the correct expression for the velocity from part (c)(i) and AG</pre>
		1	

Q	Answer	Marks	Comments
12(d)	[v = 20 + (-1)(15)] $[v_{60} =] 5 [ms^{-1}]$	B1	CAO
	Package does not land safely	E1 2	Correct conclusion. B0E1 not possible.

Question 12 Tot	I 9	
-----------------	-----	--

Q	Answer	Marks	Comments
13(a)	6m = -3vm + 3vkm	М1	Conservation of linear momentum applied. Allow one sign error. <i>m</i> may not appear throughout.
	$2 + v = vk$ $k = \frac{2}{v} + 1$	A1	Further line of working before AG
		2	

Q	Answer	Marks	Comments
13(b)	12 = km(v - (-3v))		
	or 12 = 4kmv	M1	Impulse = change in momentum Allow one sign error.
	$3 = \left(\frac{2}{v} + 1\right)mv$ $3 = (2+v)m$ $m = \frac{3}{2+v}$	A1	$k = \frac{2}{v} + 1$ substituted and one further rearrangement before AG
		2	

Question 13 Tota	4	
------------------	---	--