

INTERNATIONAL AS **MATHEMATICS**

MA01

(9660/MA01) Unit P1 Pure Mathematics

Mark scheme

January 2023

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaqaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

	Μ	Mark is for method				
	m	Mark is dependent on one or more M marks and is for method				
	Α	Mark is dependent on M or m marks and is for accuracy				
	В	Mark is independent of M or m marks and is for method and accuracy				
	E	Mark is for explanation				
\checkmark	or ft	Follow through from previous incorrect result				
	CAO	Correct answer only				
	CSO	Correct solution only				
	AWFW	Anything which falls within				
	AWRT	Anything which rounds to				
	ACF	Any correct form				
	AG	Answer given				
	SC	Special case				
	oe	Or equivalent				
	A2, 1	2 or 1 (or 0) accuracy marks				
	<i>–x</i> EE	Deduct <i>x</i> marks for each error				
	NMS	No method shown				
	Ы	Possibly implied				
	SCA	Substantially correct approach				
	sf	Significant figure(s)				
	dp	Decimal place(s)				

Q	Answer	Marks	Comments
1(a)(i)	y = f(2x)	B1	
		1	

Q	Answer	Marks	Comments
1(a)(ii)	y = f(x+4) - 1	B1	
		1	

Q	Answer	Marks	Comments
1(b)	Line $y = x - 3$ drawn	M1	Evidence of correct line drawn, intersecting $y = f(x)$ at two or more points.
	1, 4, 8	A1	CAO
		2	
	Question 1 Total	4	

Q	Answer	Marks	Comments
2(a)	$y-3 = \frac{3}{5}(x-15)$ oe and 3x-5y-30 = 0	B1	Uses gradient and coordinates of <i>A</i> to form equation leading to the required result. May see $y = \frac{3}{5}x + c$ and substitution of coordinates of <i>A</i> to find <i>c</i> but must be complete method leading to $y = \frac{3}{5}x - 6$ oe seen.
		1	

Q	Answer	Marks	Comments
2(b)	[x-intercept] $x = 10$ [y-intercept] $y = -6$	B1	Correct values of <i>x</i> & <i>y</i> intercepts <i>B</i> and <i>C</i> May be given as coordinates. PI in later working.
	[Midpoint of <i>BC</i>] $(5, -3)$	B1ft	ft their values for the $x \& y$ intercepts. Condone not given as coordinates but must be clearly identified. PI in later working.
	[Gradient of l_2] $-\frac{5}{3}$	B1	PI in later working.
	$y - (-3) = -\frac{5}{3}(x - 5)$	Μ1	oe Uses their gradient of l_2 and their coordinates of the midpoint of <i>BC</i> to form an equation for l_2 May see $y = -\frac{5}{3}x + c$ and substitution of coordinates of their midpoint to find <i>c</i> but must be complete method.
	5x + 3y - 16 = 0	A1	Correct equation set equal to zero. Allow any non-zero integer multiple.
		5	

Q	Answer	Marks	Comments
2(c)	(-1, 7)	B1	Correct coordinates of <i>D</i> Condone not given as coordinates but must be clearly identified.
		1	

Q	Answer	Marks	Comments
2(d)	$[AD =] \sqrt{(15-(-1))^2+(3-7)^2}$	M1	oe ft their coordinates of <i>D</i>
	$\begin{bmatrix} AD = \end{bmatrix} 4\sqrt{17}$	A1	CAO Must be in correct form.
		2	

Question 2 T	9	
--------------	---	--

Q	Answer	Marks	Comments
3(a)	$2((x+3)+(2x-10)) [>31] \text{ oe} \\ \text{or} \\ 4+(x-6)+(x-1)+(2x-10) \\ +(x+3)+(x-4) [>31] \\ \text{oe} \\ \text{and} \\ 6x-14>31 \text{ oe} \\ \text{and} \\ x>7.5 \\ \end{array}$	B1	CSO AG Unsimplified expression for the perimeter followed by a line of simplification before required result stated. Must appear as an inequality before the final line.
		1	

Q	Answer	Marks	Comments
3(b)	(x-1)(x-6) + (x-4)(x+3) [<58] or 4(x-4) + (x-1)(2x-10) [<58] or (2x-10)(x+3) - 4(x-6) [<58] or 4(x-4) + (x-1)(x-6) + (x-1)(x-4) [<58]	М1	oe Correct expression for the area.
	$x^{2} - 7x + 6 + x^{2} - x - 12 [< 58]$ or $4x - 16 + 2x^{2} - 12x + 10 [< 58]$ or $2x^{2} - 4x - 30 - 4x + 24 [< 58]$ or $4x - 16 + x^{2} - 7x + 6 + x^{2} - 5x + 4 [< 58]$	М1	oe All brackets correctly expanded in unsimplified form. For 3^{rd} example, condone $2x^2 - 4x - 30 - (4x - 24) [< 58]$
	$2x^2 - 8x - 6 < 58$ oe and $x^2 - 4x - 32 < 0$	A1	AG Must be convincingly shown. Working to show all terms in x and x^2 collected before required result stated. Must appear as an inequality before the final line.
		3	

Q	Answer	Marks	Comments
3(c)	(x-8)(x+4) [<0]	M1	Correct attempt to find the critical values. May see quadratic formula or completing the square used.
	-4 < x < 8	A1	ISW NMS scores M0 A0 Condone ' $x > -4$ and $x < 8$ ' but not ' $x > -4$ or $x < 8$ '
		2	

Q	Answer	Marks	Comments
3(d)	7.5 < <i>x</i> < 8	M1	PI ft their 8 provided their 8 is greater than 7.5 Condone ' $x > 7.5$ and $x < 8$ ' but not ' $x > 7.5$ or $x < 8$ '
	1.5 < <i>y</i> < 2	A1ft	Do not ISW ft their 8 minus 6 provided their 8 is greater than 7.5 Condone ' $y > 1.5$ and $y < 2$ ' but not ' $y > 1.5$ or $y < 2$ '
		2	

Question 3 Total 8

Q	Answer	Marks	Comments
4(a)	$\begin{bmatrix} p(4) = \end{bmatrix} 4^{2} (2 \times 4 - 5) - 48$ or $[p(4) =] 2(4)^{3} - 5(4)^{2} - 48$	M1	oe $p(4)$ attempted. Must use Factor Theorem.
	$\begin{bmatrix} p(4) = \\ 16(8-5) - 48 = 0 \\ or \\ [p(4) =] 48 - 48 = 0 \\ or \\ [p(4) =] 2 \times 64 - 5 \times 16 - 48 = 0 \\ or \\ [p(4) =] 128 - 80 - 48 = 0 \end{bmatrix}$	A1	CSO oe Correctly shows $p(4)=0$ Must have powers evaluated and be set equal to zero.
		2	

Q	Answer	Marks	Comments
4(b)	$2x^2 + bx + c$ with $b = 3$ or $c = 12$	M1	Must be seen as a quadratic expression.
	$(x-4)(2x^2+3x+12)$	A1	CAO Must be in the form required.
		2	

Q	Answer	Marks	Comments
4(c)	$3^2 - 4 \times 2 \times 12$	B1ft	oe Attempts to find discriminant for their quadratic factor in part (b) PI by correct value of discriminant.
	$3^2 - 4 \times 2 \times 12 = -87 < 0$ oe and There is exactly one [real] root.	E1	Must be working with correct discriminant. Not necessary for discriminant to be evaluated. Gives indication that discriminant has negative value and gives correct concluding statement. Condone statement implying no real roots. E0 scored if previous B1 not scored.
	x = 4	B1	Independent. Correct root clearly stated.
		3	

Question 4 Total	7	
· · · · · · · · · · · · · · · · · · ·		

Q	Answer	Marks	Comments
5(a)(i)	$\begin{bmatrix} u_1 = \end{bmatrix}$ 29	B1	
		1	

Q	Answer	Marks	Comments
5(a)(ii)	$[u_5 =]$ 1021	B1	
		1	

Q	Answer	Marks	Comments
5(b)(i)	12, 36, 108, 324, 972	B1	CAO
		1	

Q	Answer	Marks	Comments
5(b)(ii)	(29–12), (61–36), (141–108), (365–324), (1021–972)	М1	Intention of subtracting each term in their answer to part (b)(i) from the corresponding term in sequence <i>A</i> Minimum of two subtractions. ft their 29 and their 1021 from part (a) PI by two correct terms of sequence <i>C</i>
	17, 25, 33, 41, 49	A1	CAO
		2	

Q	Answer	Marks	Comments
5(c)(i)	8	B1	
		1	

Q	Answer	Marks	Comments
5(c)(ii)	8 <i>n</i> + 9	B1	ACF such as $17 + 8(n-1)$
		1	
			r
	Question 5 Total	7	

Q	Answer	Marks	Comments
6(a)(i)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] 9x^2 + 28x + 17$	B2,1	B1 Two correct terms. B2 Fully correct.
		2	

Q	Answer	Marks	Comments
6(a)(ii)	$9 \times (-2)^2 + 28 \times (-2) + 17 \ [= 36 - 56 + 17]$	М1	Attempt to find value of $\frac{dy}{dx}$ at <i>P</i> ft their answer to part (a)(i)
	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] - 3 \text{and} \left[m'\right] = \frac{1}{3}$	A1	Correct value of derivative and gradient of normal at <i>P</i> $m' = \frac{1}{3}$ may be embedded in unsimplified equation of <i>l</i>
	$y-9 = \frac{1}{3}(x+2)$ oe and $y = \frac{1}{3}x + \frac{29}{3}$	A1	CSO AG Forming a simplified or an unsimplified equation leading to required equation stated. May see $y = \frac{1}{3}x + c$ and substitution of coordinates of <i>P</i> to find <i>c</i> but must be complete method. Must have previous A1 to be able to be awarded this A1
		3	

Q	Answer	Marks	Comments
6(b)	$3x^3 + 14x^2 + 17x + 11 = \frac{1}{3}x + \frac{29}{3}$		
	or (1 29)	M1	
	$3x^{3} + 14x^{2} + 17x + 11 - \left(\frac{1}{3}x + \frac{23}{3}\right) [=0]$		
	$9x^3 + 42x^2 + 51x + 33 = x + 29$		
	or $3x^3 + 14x^2 + \frac{50}{3}x + \frac{4}{3} = 0$ and	A1	AG Must be convincingly shown Additional line of simplification before required result stated.
	$9x^3 + 42x^2 + 50x + 4 = 0$		
		2	

Q	Answer	Marks	Comments
6(c)(i)	$\left(x+\frac{4}{3}\right)^2$ or $(3x+4)^2$	M1	Condone $\frac{8}{6}$ or $\frac{12}{9}$ for $\frac{4}{3}$
	$9\left(x+\frac{4}{3}\right)^2-16+2$	A1	Allow $9\left(\left(x+\frac{4}{3}\right)^{2}-\frac{16}{9}\right)+2$ $9\left(\left(x+\frac{4}{3}\right)^{2}-\frac{16}{9}+\frac{2}{9}\right)$ $9\left(\left(x+\frac{4}{3}\right)^{2}-\frac{14}{9}\right) \text{ or } (3x+4)^{2}-14$ Condone $\frac{8}{6}$ or $\frac{12}{9}$ for $\frac{4}{3}$
	$9\left(x+\frac{4}{3}\right)^2-14$	A1	CAO Condone $\frac{8}{6}$ or $\frac{12}{9}$ for $\frac{4}{3}$
		3	

Q	Answer	Marks	Comments
6(c)(ii)	$\left[9\left(x+\frac{4}{3}\right)^2-14=0 \Rightarrow\right] \left(x+\frac{4}{3}\right)^2=\frac{14}{9}$	М1	ft their answer to part (c)(i) provided it is in the correct form. Condone $\frac{8}{6}$ or $\frac{12}{9}$ for $\frac{4}{3}$ Sets completed square form equal to zero and rearranges.
	$\left[x + \frac{4}{3} = \pm \frac{\sqrt{14}}{3}\right]$		A1 One correct answer (simplified or
	$[x =] \frac{-4 \pm \sqrt{14}}{3}$ or $[x =] \frac{-4 + \sqrt{14}}{3} \text{ and } [x =] \frac{-4 - \sqrt{14}}{3}$	A2,1	unsimplified) A2 Both correct answer (simplified of simplified) Condone given as sum or difference of two fractions with denominator 3, eg $[x=] -\frac{4}{3} \pm \frac{\sqrt{14}}{3}$
		3	

|--|

Q	Answer	Marks	Comments
7(a)	$\left[\frac{d^2 y}{dx^2}\right] = \frac{3}{2} \times 2x^{\frac{1}{2}} - \frac{3}{4} \times 9x^{-\frac{1}{4}}$	M1	At least one term correct
	$\left[\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right] 3x^{\frac{1}{2}} - \frac{27}{4}x^{-\frac{1}{4}}$	A1	ACF with simplified coefficients
		2	

Q	Answer	Marks	Comments
7(b)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] 2t^2 - 9t - 56$	B1	PI Correct substitution.
	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] (2t+7)(t-8)$	B1	Correct factorisation.
		2	

Q	Answer	Marks	Comments
7(c)(i)	$\left[x=\right] t^{\frac{4}{3}}$	M1	PI Use of <i>x</i> as a power of <i>t</i>
	$[x=] 8^{\frac{4}{3}}$	М1	Finds positive root of (2t+7)(t-8) = 0 and raises it to their $\frac{4}{3}$ ft their <i>c</i> from part (b) .
	[<i>x</i> =] 16	A1	Award SC1 for correct final answer but neither $t^{\frac{4}{3}}$ nor $8^{\frac{4}{3}}$ seen.
		3	

Q	Answer	Marks	Comments
7(c)(ii)	$\begin{bmatrix} \frac{d^2 y}{dx^2} = 3 \times 16^{\frac{1}{2}} - \frac{27}{4} \times 16^{-\frac{1}{4}} = \end{bmatrix} \frac{69}{8}$ or 8.625 and Since $\frac{d^2 y}{dx^2} > 0$ then it is a minimum	E1ft	Evaluates their second derivative with $x = 16$ ft their $x = 16$ and their second derivative provided value of second derivative is positive and gives statement linking positive value of second derivative to it being a minimum.
		1	

Q	Answer	Marks	Comments
7(d)	0 < <i>x</i> < 16	B1ft	ft their 16 from part (c)(i) but only if value is positive.
		1	

Question 7 Total	9	
------------------	---	--

Q	Answer	Marks	Comments
8(a)	$4 + 2\sqrt{3} + 2\sqrt{a} + 2\sqrt{3} + 3 + \sqrt{3a} - 2\sqrt{a} - \sqrt{3a} - a$	М1	Complete expansion of brackets, condoning one error
	$7+4\sqrt{3}-a$	A1	Correct final form, must be convincingly shown.
		2	

Q	Answer	Marks	Comments
8(a) ALT	$\left(2+\sqrt{3}\right)^2-a$	M1	
	$4 + 2\sqrt{3} + 2\sqrt{3} + 3 - a$ or $4 + 4\sqrt{3} + 3 - a$		
	and $7+4\sqrt{3}-a$	A1	Correct final form, must be convincingly shown. Additional line of simplification before required result stated.
		2	

Q	Answer	Marks	Comments
8(b)	$\frac{12}{2+\sqrt{3}-\sqrt{7}} \times \frac{2+\sqrt{3}+\sqrt{7}}{2+\sqrt{3}+\sqrt{7}}$ or $\frac{12(2+\sqrt{3}+\sqrt{7})}{4\sqrt{3}}$	М1	PI Multiplies numerator and denominator by $2 + \sqrt{3} + \sqrt{7}$ ft their $4\sqrt{3}$ from part (a)
	$\frac{12\sqrt{3}\left(2+\sqrt{3}+\sqrt{7}\right)}{12} \text{ oe} \\ \text{or} \\ 2\sqrt{3}+3+\frac{3\sqrt{7}}{\sqrt{3}} \text{ oe} \\ \text{or} \\ \sqrt{3}\left(2+\sqrt{3}+\sqrt{7}\right) \text{ oe} \end{cases}$	М1	PI Rationalises denominator or clear attempt to divide through by the denominator.
	$3 + 2\sqrt{3} + \sqrt{21}$	A1	САО
		3	
			1

Question 8 Total	5	
------------------	---	--

Q	Answer	Marks	Comments
9(a)	$ \left[(3)^3 \right] + 3(3)^2 \left(-2\sqrt{x} \right) + 3(3) \left(-2\sqrt{x} \right)^2 \\ \left[+ \left(-2\sqrt{x} \right)^3 \right] $	M1	For either (1), 3, 3, (1) oe unsimplified. or $\binom{3}{1}(3)^2(-2\sqrt{x})$ or $\binom{3}{1}(3)^2(2\sqrt{x})$ or $\binom{3}{2}(3)(-2\sqrt{x})^2$ or $\binom{3}{2}(3)(2\sqrt{x})^2$ oe <i>x</i> not needed, PI
	<i>p</i> = 54	A1	If correct working for p seen condone $-54\sqrt{x}$ seen in expansion and p not explicitly stated.
	<i>q</i> = 36	A1	CAO Condone $36x$ seen in expansion and q not explicitly stated. If working for p not shown and correct q seen with NMS , award M1 A0 A1
		3	

Q	Answer	Marks	Comments
9(b)(i)	$\frac{27}{\sqrt{x}} - 42 + 36\sqrt{x} - 8x$ or $27x^{-\frac{1}{2}} - 42 + 36x^{\frac{1}{2}} - 8x$	M1	ft their 54 and 36 Writing their quotient as a simplified sum of terms in \sqrt{x} and x . Possibly given in index form. Condone one error. Condone $-42 = -54 + 12$ CAO
	$27x^{\overline{2}} - 42 + 36x^{\overline{2}} - 8x$ $\left[2 \times 27x^{\frac{1}{2}} - 42x + \frac{2}{3} \times 36x^{\frac{3}{2}} - \frac{1}{2} \times 8x^{2} + c\right]$	A1	Condone $-42 = -54 + 12$
	$54x^{\frac{1}{2}} - 42x + 24x^{\frac{3}{2}} - 4x^{2} + c$ or $54\sqrt{x} - 42x + 24x\sqrt{x} - 4x^{2} + c$	B2,1ft	ft their integral provided previous M1 scored. Correct answer given in index or surd form. B2 Fully correct. B1 Three terms correct. Condone omission of $+c$
		4	

Q	Answer	Marks	Comments
9(b)(ii)	$ \begin{pmatrix} 54(9)^{\frac{1}{2}} - 42(9) + 24(9)^{\frac{3}{2}} - 4(9)^{2} \\ - \left(54(4)^{\frac{1}{2}} - 42(4) + 24(4)^{\frac{3}{2}} - 4(4)^{2} \right) \end{cases} $	M1	Attempts $F(9) - F(4)$ ft their indefinite integral from part (b)(i).
	[= 108 – 68]		
	40	A1	
		2	

Q	Answer	Marks	Comments
9(c)	Area of Trapezium = $\frac{1}{2}(5.75+1.5) \times 5$ $\begin{bmatrix} = 18.125 \text{ or } \frac{145}{8} \text{ or } 18\frac{1}{8} \end{bmatrix}$	B1	oe such as fractional equivalents Correct expression for the required area.
	$\frac{1}{2} \times 40 - \frac{1}{2} (5.75 + 1.5) \times 5$ 1.875	B1ft	Must see working using their part (b)(ii) oe ft their $\frac{1}{2} \times 40$ (PI by use of 20) provided it is greater than 18.125 Re-integrating is awarded B0 B0 Accept $\frac{15}{8}$ or $1\frac{7}{8}$
		2	

Question 9 Total	11	
------------------	----	--

Q	Answer	Marks	Comments
10	$\frac{1}{2}(10)(2\times12+(10-1)d) \ [=480]$	М1	oe PI Correct expression for $\sum_{n=1}^{10} u_n$ in terms of <i>d</i> with values substituted.
	d = 8	A1	CAO
	$\frac{1}{2}k(2\times12+(k-1)\times8)$ = $\frac{1}{2}(k-10)(2\times12+(k-11)\times8)+3360$ or $\frac{1}{2}k(2\times12+(k-1)\times8)$ $-\frac{1}{2}(k-10)(2\times12+(k-11)\times8)$ [= 3360]	М1	oe Values correctly substituted. Correct equation in terms of k setting sum of the sequence equal to the sum of the first $k - 10$ terms and the last 10 terms. or Correct expression in terms of k for the difference between the sum of the sequence and the sum of the first $k - 10$ terms. Condone one error.
	$4k^{2} + 8k = 4k^{2} - 72k + 320 + 3360$ or $4k^{2} + 8k - 4k^{2} + 72k - 320 [= 3360]$	М1	oe Brackets correctly expanded in an unsimplified equation or expression.
	<i>k</i> = 46	A1	CAO
	$\left[\sum_{n=1}^{46} u_n = \right] \frac{1}{2} (46) (2 \times 12 + (46 - 1) \times 8)$	m1	 oe Substitutes correctly into the formula for the sum of an arithmetic sequence. ft their 46 This is dependent on second M1 only
	$\left[\sum_{n=1}^{46} u_n =\right] 8832$	A1	CAO
		7	

Q	Answer	Marks	Comments
10 ALT 1	$\frac{1}{2}(10)(2\times12+(10-1)d) \ [=480]$	M1	oe PI Correct expression for $\sum_{n=1}^{10} u_n$ in terms of <i>d</i> with values substituted.
	<i>d</i> = 8	A1	CAO
	$12 + (k - 1) \times 8 = 8k + 4$	B1	oe PI Simplified or unsimplified. Expression for the <i>k</i> th term of the sequence.
	$\frac{1}{2}(10)(2(8k+4)+9\times(-8)) = 3360$ or 16k-64 = 672	М1	oe Correct equation in terms of k setting the sum of the first 10 terms of the reversed sequence equal to 3360 Simplified or unsimplified. ft their $-d$ and $8k + 4$
	<i>k</i> = 46	A1	CAO
	$\begin{bmatrix} \sum_{n=1}^{46} u_n = \\ 1 \\ 2 \\ 1 \\ 1$	m1	oe Substitutes correctly into the formula for the sum of an arithmetic sequence. May apply to sequence in reversed or original order. ft their 46 This is dependent on second M1 only
	$\left[\sum_{n=1}^{46} u_n =\right] 8832$	A1	CAO
		7	

Q	Answer	Marks	Comments
10 ALT 2	$\frac{1}{2}(10)(2\times12+(10-1)d) \ [=480]$	М1	oe PI Correct expression for $\sum_{n=1}^{10} u_n$ in terms of <i>d</i> with values substituted.
	d = 8	A1	САО
	$12 + (k - 10) \times 8$ or 8k - 68	B1	oe PI Simplified or unsimplified. Expression for the $(k-9)$ th term of the sequence.
	$\frac{1}{2}(10)(2(8k-68)+9\times(8))=3360$ or 16k-64=672	М1	oe Correct equation in terms of k setting the sum of the last 10 terms of the sequence equal to 3360 Simplified or unsimplified. ft their d and $8k - 68$
	<i>k</i> = 46	A1	CAO
	$\left[\sum_{n=1}^{46} u_n = \right] \frac{1}{2} (46) (2 \times 12 + (46 - 1) \times 8)$	m1	oe Substitutes correctly into the formula for the sum of an arithmetic sequence. ft their 46 This is dependent on second M1 only
	$\left[\sum_{n=1}^{46} u_n =\right] 8832$	A1	CAO
		7	

Question 10 Total	7	