

Please write clearly in block capitals.					
Centre number	Candidate number				
Surname					
Forename(s)					
Candidate signature	I declare this is my own work.	/			

INTERNATIONAL A-LEVEL MATHEMATICS

(9660/MA03) Unit P2 Pure Mathematics

Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphic calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working: otherwise marks may be lost.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
TOTAL	

		Answer all questions in the spaces provided.
1	(a)	Use the mid-ordinate rule with 4 strips to find an estimate for $\int\limits_{0}^{0.8} \sin(e^x) dx$
		Give your answer to three decimal places. [4 marks]
		Answer

1 (b) A curve has equation $y = \sin(e^x)$

The curve intersects the line y = 3x - 2 at a single point where $x = \alpha$

1 (b) (i) Show that α lies between 0.8 and 0.9

[2 marks]

1 (b) (ii) The equation $\sin(e^x) = 3x - 2$ can be rearranged into the form $x = \frac{\sin(e^x) + 2}{3}$

Use the iterative formula

$$x_{n+1} = \frac{\sin(e^{x_n}) + 2}{3}$$

with $x_1 = 0.8$ to find the values of x_2 and x_3

Give your answers to three decimal places.

[2 marks]

$$x_2 =$$

$$x_3 =$$

8

2	(a)	Given that	$y = \frac{1 - 3x}{2x + 5}$	show that	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{k}{(2x+5)^2}$	where k is a constant.	[2 marks]
2	(b)	Given that	$y = \ln\left(\frac{1 - 3}{2x + 1}\right)$	$\left(\frac{3x}{5}\right)$ find	$\frac{\mathrm{d}y}{\mathrm{d}x}$		[2 marks]

Answer

3	(a)	Express $16\sin\theta + 30\cos\theta$ in the form $R\sin(\theta + \alpha)$ where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$	C
		Give your value of $lpha$ to three significant figures.	
		[3 mark	s]
			_
			_
			_
			_
			_
			_
			_
		Answer	_
3	(b)	Using your answer to part (a)	
3	(b) (i)	write down the minimum value of $16\sin\theta + 30\cos\theta$ [1 mar	k]
		Answer	
3	(b) (ii)	find a value of θ at which this minimum value occurs. [1 mar	k]
			^-ert
		Answer	-
		7.00001	_ _

		<i>b</i> =	<i>c</i> =
4	(a) (i)	Find the value of b and the value of c	[4 marks
		()	
		When $f(x)$ is divided by $(2x+1)$ the remainder is -5	
		When $f(x)$ is divided by $(2x+1)$ the remainder is 0	
		$I(x) = 18x^{2} + bx^{2} + cx - 4$ where <i>b</i> and <i>c</i> are constants.	
4		The polynomial $f(x)$ is defined by $f(x) = 18x^3 + bx^2 + cx - 4$	

4	(a) (ii)) Show that	
	,	f(x) = (2x+1)(px+q)(px-q)	
		where p and q are constants.	
			2 marks]
	41.	Lland and all and the state	
4	(b)	Hence show that	
		$\frac{f(x)}{g(x)} = k + \frac{g(x)}{g(x)}$	
		$\frac{f(x)}{(3x+2)(x^2-2)} = k + \frac{g(x)}{x^2-2}$	
		where k is a constant and $ {f g} $ is a linear function.	
			2 marks]

5	(a)	By using a suitable trigonometrical identity, solve the equation	
		$3\sec^2(2x-1) = 2-4\tan(2x-1)$	
		giving all values of x to two decimal places in the interval $0 < x < \pi$	[5 marks]
		Answer	

5	(D)	Given that	$\cos 2x(1-\cos 4x)$	$(x) \neq 0$, show that	
				$\frac{\sin 4x (1 - \cos 2x)}{\cos 2x (1 - \cos 4x)} = \tan x$	
					[4 marks]

Turn over for the next question

Do not write outside the box

6	(a)	Find the binomial expansion of	$(1-x)^{-\frac{1}{3}}$	up to and including the term in x^3	
		·	()		[3 marks]
					[o marks]
		-			
			_		
			Answer		
			1		
6	(b) (i)	Find the binomial expansion of	1	up to and including the term in x^3	
	(- / (/		$\sqrt[3]{1-2x}$	up to and including the term in x^3	
					[2 marks]
			Answer		
			-		

6	(b) (ii)	State the values of x for which the binomial expansion of $\frac{1}{\sqrt[3]{1-2x}}$ is valid.	
			[2 marks]
		Answer	
6	(c)	Use your binomial expansion in part (b)(i) with $x = 0.1$ to find an estimate for giving your answer to three decimal places.	³ √10
		giving your answer to three decimal places.	[3 marks]
		Answer	

7 (a)	Describe a sequence of two geometrical transformations that maps the graph	
	of $y = \cos x$ on to the graph of $y = \frac{1 + \cos x}{3}$	
	3	[4 marks]
		[+ marko]

7	(b)	The function f is defined b	у
---	-----	-----------------------------	---

$$f(x) = \frac{1 + \cos x}{3} \quad \text{for } 0 \le x \le \pi$$

Find an expression for f⁻¹(x)

[2 marks]

Answer

Turn over for the next question

8	(a) (i)	Show that		
			6 a bx	
			$\frac{6}{x^3+x} = \frac{a}{x} + \frac{bx}{x^2+1}$	
			JU 1 JU JU 1 I	
		where a and b are constants.		
				[2 marks]
Ω	(a) (ii)	Using part (a)(i), show that		
O	(a) (II)	Using part (a)(i), snow that	2	
			$\int_{1}^{2} \frac{6}{x^3 + x} \mathrm{d}x = \ln k$	
			$\int_{1}^{3} x^{3} + x$	
		where k is a rational number.		
				[4 marks]

8	(b) (i)	By writing $\sec y$ as $(\cos y)^{-1}$ use the chain rule to show that	$\frac{d(\sec y)}{d(\sec y)} = \sec y$	$c y \tan y$
			dy	[2 marks]
				[=
8	(b) (ii)	Use the substitution $u = \sin x$ to find the exact value of		
		$\int_{0}^{0.5} \frac{u}{\sqrt{\left(1-u^2\right)^3}} \mathrm{d}u$		
		0		
		You may use $\sin \frac{\pi}{6} = \frac{1}{2}$ and $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$		
		$\frac{1}{6} = \frac{1}{2} \text{and} \frac{\cos \frac{\pi}{6}}{\frac{\pi}{2}} = \frac{1}{2}$		[E morke]
				[5 marks]
		Answer		

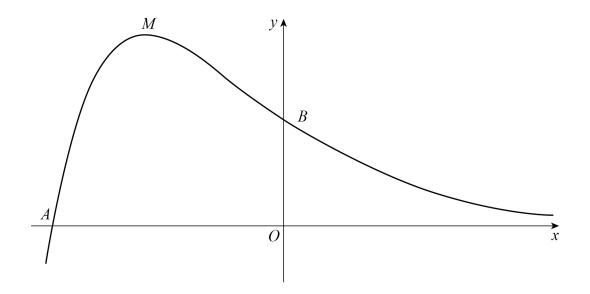
9	(a)	Express $\frac{1}{(30-x)(10-x)}$ in partial fractions. [2 mar	
		Answer	
9	(b)	A chemical experiment produces a substance. The mass of the substance is x grams after time t minutes. The mass of the substance increases at a rate directly proportional to $(30-x)(10-x)$)
		[9 mar	ks]

Answer _

| ----

11

Do not write outside the box


10	A curve is defined by the parametric equations $x = \cos^3 t$ and $y = (2 + \cos^3 t)$	$\cos^2 t$) $\sin t$
10 (a)	Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = -\cot t$	[4 marks]
10 (b)	Find an equation of the normal to the curve at the point P where $t = p$	[2 marks]
	Answer	

0 (c)	The normal to the curve at P intersects the x -axis at the point A and intersects the y -axis at the point B
	Find the length of AB [6 marks]
	Answer

The diagram shows a sketch of the curve with equation $y = (5 + 2x)e^{-x}$

The curve crosses the axes at A and B and has a stationary point at M

11 (a) Find the coordinates of A and the coordinates of B

[1 mark]

Answer _____

11 (b) The curve $y = (5 + 2x)e^{-x}$ has a stationary point at M

11 (b) (i) Find $\frac{\mathrm{d}y}{\mathrm{d}x}$

[2 marks]

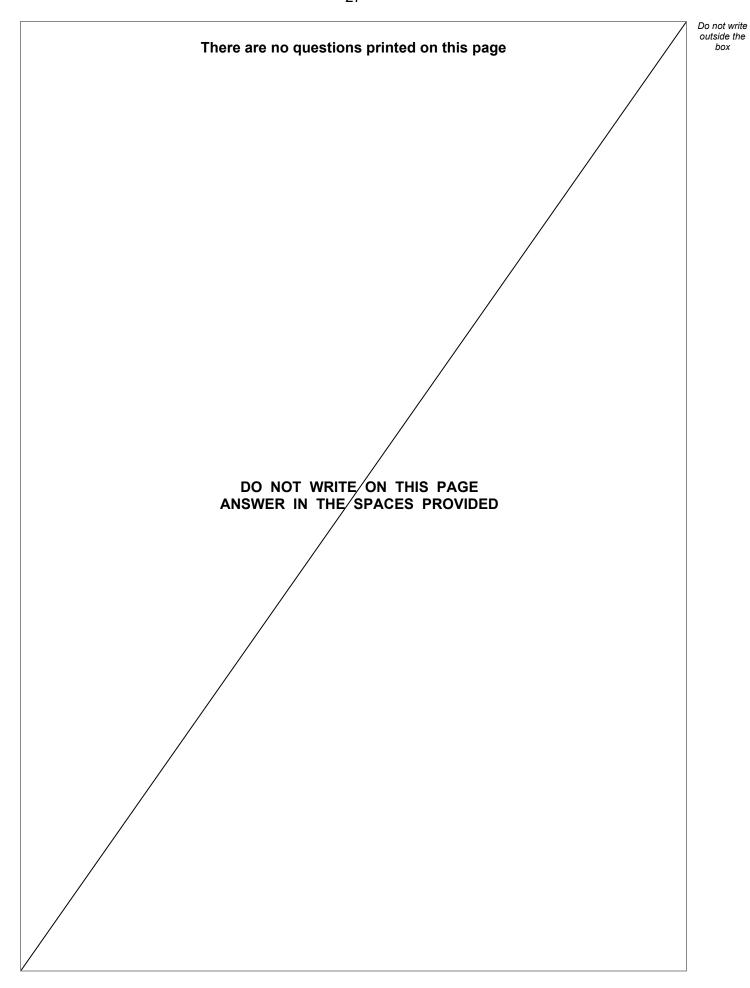
Answer

11	(b) (ii)	Find the exact value of the coordinates of <i>M</i> [2 marks]
		Answer
11	(b) (iii)	Show that <i>M</i> is a local maximum.
		[2 marks]
11	(c)	Find the exact value of the area of the region enclosed by the curve $y = (5 + 2x)e^{-x}$ and the line AB
		[6 marks]

	Do not write outside the box
	_ DOX
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	-
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	-
	-
	- <u> </u>
Answer	_ 13

A curve has equation $y = x \ln(x + y)$	
Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{y} + \frac{y}{x} + 1$ [6 m	arks]
Answer	

Find the distance <i>AB</i>	[2 marks]
	[2 marks]
Answer	
Г 9	
13 (b) The line l has equation $\mathbf{r} = \begin{bmatrix} 9 \\ -2 \\ q \end{bmatrix} + \mu \begin{bmatrix} 5 \\ -4 \\ 5 \end{bmatrix}$	
$\lfloor q \rfloor \lfloor 5 \rfloor$	
13 (b) (i) The line <i>l</i> intersects the line <i>AB</i>	
Find the value of q , where q is an integer.	[3 marks]
	[5 marks]
·	
Answer	


13	(b) (ii)	Find the acute angle between the line l and the line AB , giving your answer in to three significant figures.	degrees
			[4 marks]
		Answer	
13	(c)	The point D has coordinates $(-1, 2, 3)$.	
		The perpendicular from ${\it D}$ to the line ${\it l}$ meets ${\it l}$ at the point ${\it C}$	
		Show that <i>ABC</i> is a right-angled triangle.	
			[6 marks]

 			 15

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team

Copyright © 2022 Oxford International AQA Examinations and its licensors. All rights reserved.

Do not write outside the