

Please write clearly in block capitals.						
Centre number	Candidate number					
Surname						
Forename(s)						
Candidate signature						
	I declare this is my own work.					

INTERNATIONAL A-LEVEL MATHEMATICS

(9660/MA05) Unit M2 Mechanics

Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the Oxford International AQA booklet of formulae and statistical tables (enclosed).
- You may use a graphic calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- The **final** answer to questions requiring the use of calculators should be given to two significant figures, unless stated otherwise.
- Unless stated otherwise, the acceleration due to gravity, g, should be taken as 9.8 m s⁻²

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
TOTAL		

		Answer all questions in the spaces provided.	Do not write outside the box
1		A particle moves in a horizontal plane so that its position vector, \mathbf{r} metres, at time t seconds is given by	
		$\mathbf{r} = \begin{bmatrix} 5\sin\left(\frac{\pi t}{6}\right) \\ 5\cos\left(\frac{\pi t}{6}\right) \end{bmatrix}$	
1	(a) (i)	Find the velocity of the particle at time <i>t</i> seconds. [2 marks]	
		Answer	
1	(a) (ii)	Find the acceleration of the particle at time <i>t</i> seconds. [1 mark]	
		Answer	

1	(b)	Using your answers to part (a) , show that the velocity of the particle is always perpendicular to the acceleration of the particle.	[3 marks]	Do not write outside the box
1	(c)	Describe the path that the particle follows.	[1 mark]	
				7
		Turn over for the next question		

Turn over ►

2	Five particles, <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> and <i>E</i> , are placed at different positions in an <i>x</i> - <i>y</i> plane.

The table below shows the mass and coordinates of each particle.

Particle	Mass (kg)	Coordinates
A	1.25	(3, 1)
В	2.5	(4, 2)
С	3.75	(5, 3)
D	2.5	(1, 2)
Е	1.25	(2, 1)

Find the coordinates of the centre of mass of the particles.

[3 marks]

Answer ____

3

3		A body, of mass 2 kg is acted upon by the three forces \pmb{F}_1 newtons, \pmb{F}_2 newtons and \pmb{F}_3 newtons, where	Do not write outside the box
		$\mathbf{F}_{1} = \begin{bmatrix} 2\\-1\\5 \end{bmatrix} \qquad \qquad \mathbf{F}_{2} = \begin{bmatrix} 3\\0\\2 \end{bmatrix} \qquad \qquad \mathbf{F}_{3} = \begin{bmatrix} 7\\3\\-3 \end{bmatrix}$	
3	(a)	Find the acceleration of the body. [3 marks]	
		Answer	
3	(b)	Another force, \mathbf{F}_4 newtons, now acts on the body so that the body is in equilibrium.	
		Find \mathbf{F}_4 [1 mark]	
		Answer	4
		Turn over ►	

		Do not write outside the
4	A block, of weight 500 newtons, is at rest on a rough slope and is prevented from moving down the slope by a horizontal force of 60 newtons, as shown in the diagram.	box
	The slope is inclined at an angle of 15° to the horizontal.	
	→ 60 N	
	15°	
	Throughout this question you may use the following results:	
	$\sin 15^{\circ} = \frac{\sqrt{6} - \sqrt{2}}{4}$ and $\cos 15^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4}$	
	$\sin 15^\circ = \frac{1}{4}$ and $\cos 15^\circ = \frac{1}{4}$	
4 (a)	The magnitude of the frictional force which acts on the block is F newtons.	
	Find E with a second in the form $\sqrt{2} + 1/2$ where $\sqrt{2}$ is the second form	
	Find <i>F</i> , giving your answer in the form $a\sqrt{6} + b\sqrt{2}$ where <i>a</i> and <i>b</i> are constants. [4 marks]	
	[4 marks]	
	[4 marks]	

4 (b)	The coefficient of friction between the block and the slope is μ	
	Find the range of possible values for μ	[4 marks]
	Answer	
<u> </u>		Turn over ▶

8

Do not write outside the box

5		A pebble is projected with a speed of 15 m s^{-1} at an angle of 39° above the horizontal from a point O on horizontal ground.	Do not write outside the box
5	(a) (i)	Find the time of flight of the pebble, giving your answer to three significant figures. [3 marks]	
		Answer	
5	(a) (ii)	Find the range of the pebble. [2 marks]	
		Answer	

5	(a) (iii)	State an assumption you have made in part (a)(ii)
5	(b) (i)	Find the maximum height of the pebble.

Answer _____

5 (b) (ii) State the horizontal displacement of the pebble from *O* when it is at its maximum height. [1 mark]

Answer _____

Turn over for the next question

Turn over ►

Do not write outside the box

9

[1 mark]

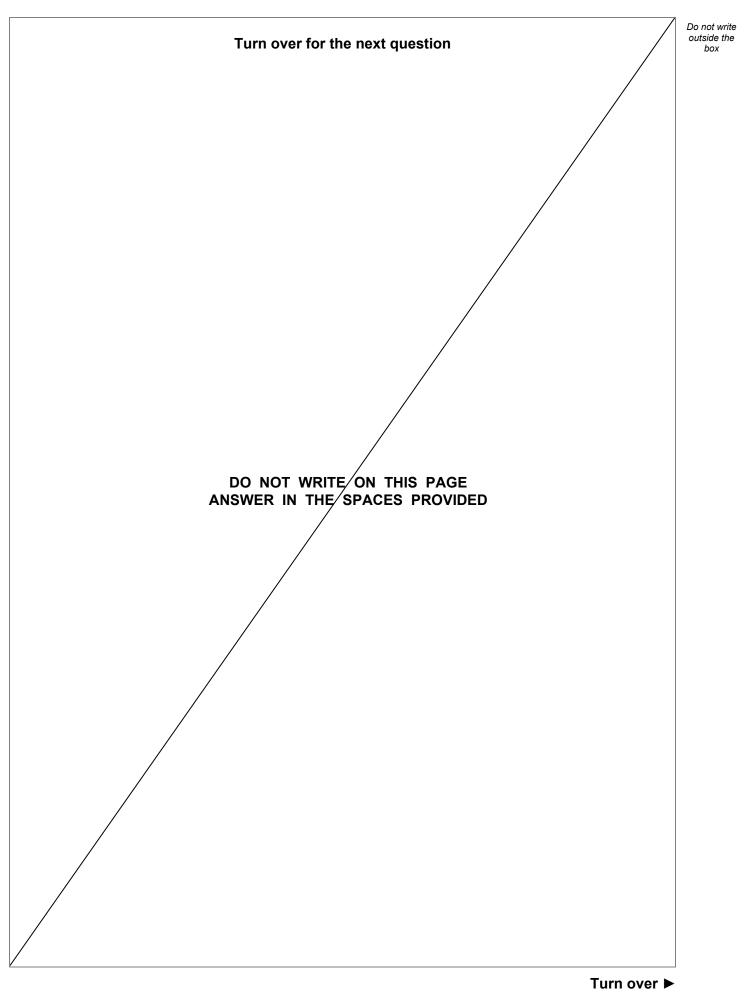
[2 marks]

6		A cyclist is riding her bicycle at a constant speed of 6.0 m s^{-1} along a straight horizontal road.	Do not write outside the box
		The combined mass of the cyclist and her bicycle is $70 \ \text{kg}$	
6	(a)	Calculate the kinetic energy of the cyclist and her bicycle. [2 marks]	
		Answer	
6	(b)	The cyclist's constant power output is 150 W	
6	(b) (i)	Explain why the total resistive force acting on the cyclist and her bicycle must be 25 N [2 marks]	
6	(b) (ii)	State, with a reason, the work done each second by the cyclist against the total resistive force which acts on the cyclist and her bicycle. [2 marks]	

6	(c)	The cyclist begins to ride up a 100 metre section of straight road which is inclined at 1.5° to the horizontal.	Do not write outside the box
		The total resistive force which acts on the cyclist and her bicycle along the $100~\rm{metre}$ section of road is constant and has magnitude $25~\rm{N}$	
		The speed of the cyclist and bicycle at the start of this section of road is $6.0~{\rm m~s^{-1}}$ and she now produces a constant driving force of $40~{\rm N}$	
6	(c) (i)	Find the acceleration of the cyclist and her bicycle on the 100 metre section of road. [4 marks]	
		Answer	
6	(c) (ii)	Find the speed of the cyclist and her bicycle at the end of the 100 metre section of road. [2 marks]	
		Answer	
6	(c) (iii)	Calculate the change in gravitational potential energy of the cyclist and her bicycle by riding up the 100 metre section of road. [2 marks]	
		Answer	14

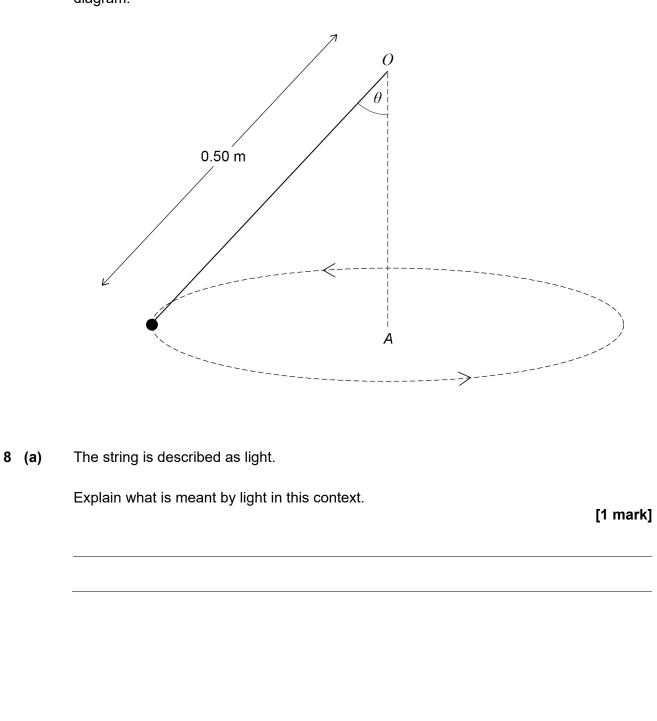
Turn over ►

7	A particle is projected with speed u m s ⁻¹ at an angle α degrees above the horizontal from a point O on horizontal ground.	Do not write outside the box
	The horizontal displacement of the particle from O at time t seconds is x metres.	
	The vertical displacement of the particle from O at time t seconds is y metres.	
7 (a) (i)	Write down an expression for x in terms of u , α and t [1 mark]	
	Answer	
7 (a) (ii)	Write down an expression for y in terms of u , α , g and t [1 mark]	
	Answer	



7	(b)	Using your answers to part (a) , show that the formula for the trajectory of the particle is	Do not w outside t box
		$y = x \tan \alpha - \frac{gx^2}{2u^2} \sec^2 \alpha$	
		2u [4 marks]	
		Question 7 continues on the next page	

7	(c) (i)	Find an expression for the maximum height reached by the particle in terms of	[3 marks]	Do not write outside the box
7	(c) (ii)	Answer	[2 marks]	
		Answer		11


IB/G/Jun22/MA05

8 A light inextensible string of length 0.50 metres has one of its ends attached to a fixed point *O*

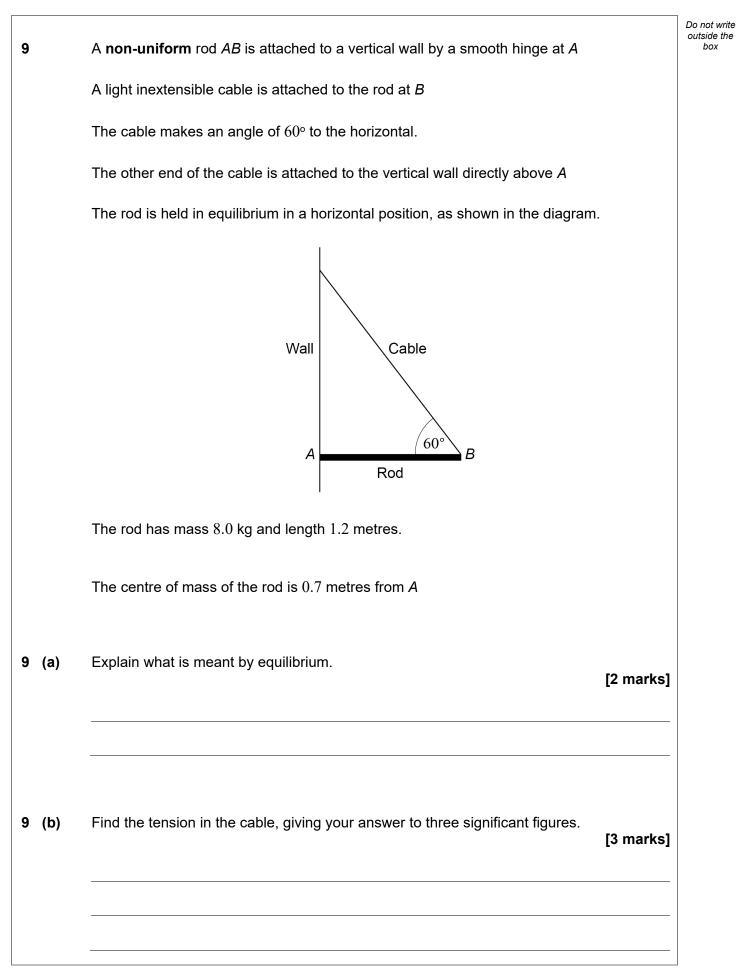
The other end of the string is attached to a particle of mass m kg

The particle is set into motion so that it moves with constant speed $v \text{ m s}^{-1}$ in a horizontal circle about a centre *A*, where *A* is directly below *O*

The string makes an angle θ degrees to the vertical, where $0 \le \theta \le 90$ as shown in the diagram.

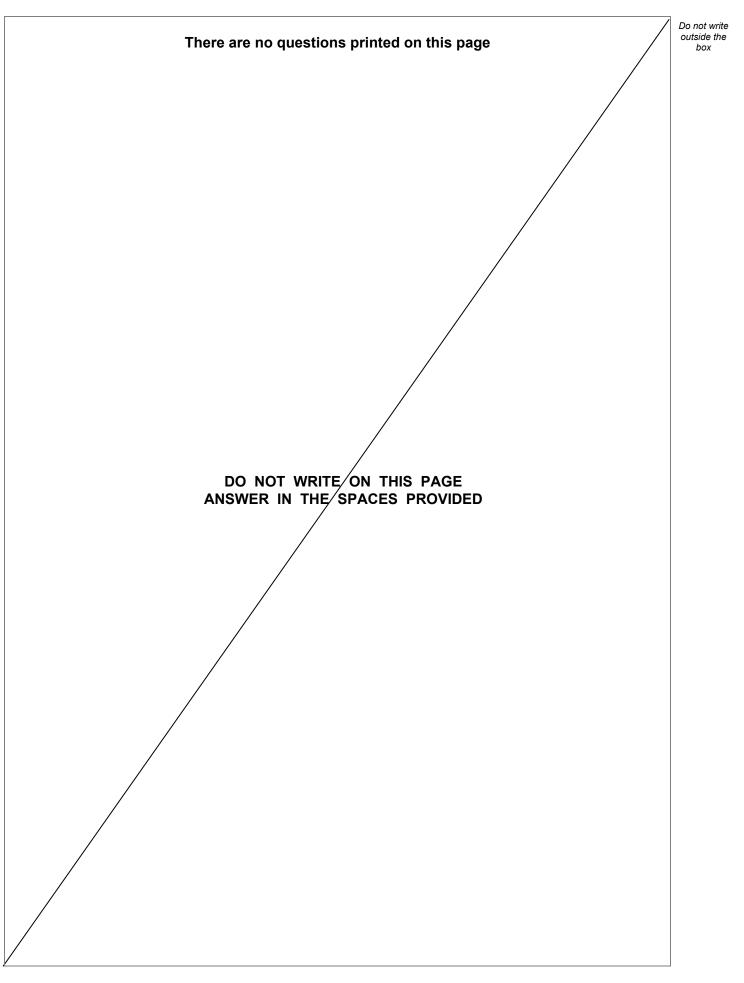
Do not write outside the box

8 (b)	Show that $g\sin^2\theta = 2v^2\cos\theta$		Do not write outside the box
		[6 marks]	
	Question 8 continues on the next page		


Turn over ►

8	(c)	The speed of the particle is 4.0 m s^{-1}	Do not write outside the box
8	(c) (i)	By forming a quadratic equation in $\cos\theta$ find the value of θ [4 marks]	
		Answer	

(c) (ii)	Find the angular speed of the particle.	orkol	Do not write outside the box
	[2 m	larksj	
	Answer		13
	Turn over for the next question		
	Turn /	over >	
	(c) (ii)	Answer	[2 marks]


IB/G/Jun22/MA05

11

	Answer	
9 (c)	Calculate the magnitude and direction of the reaction force which acts on the rod at A showing the direction of the reaction force on a labelled diagram. [6 mag]	
	Answer	
	END OF QUESTIONS	

2 1

Do not write
outside the
box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2022 Oxford International AQA Examinations and its licensors. All rights reserved.

