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outside the  

box Answer all questions in the spaces provided. 

 
1   A curve C  has equation  

 

( )1 1= +1 +
2

tan tanh− −  
 
 

xy x      where     2 < < 2x−  

 

1 (a)  Find  d
d
y
x

  

[2 marks]  
 

  

  

  

  

  

 

Answer 
 

 
1 (b)  Hence find an equation of the normal to C at the point P on the curve given that 

the x-coordinate of P is 0 
 [3 marks]  

 

  

  

  

  

  

  

  

  

  

 
Answer  

 
5 
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2   

 
 
 
 
The matrix    
 
 
 

 
 

2 (a)  Describe fully the single transformation represented by the matrix A  
[2 marks]  

 

  

  

  

  

  

 
 

2 (b)  For this transformation, state the line of invariant points. 
[1 mark]  

 

  

  

 
Answer  

 
 
 
 
 

Turn over for the next question 
  

 
3 
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3 (a)  Express   ( )( )11
6

+− rr
   in the form   

11 +
+

− r
B

r
A  , where A  and B  are integers. 

[2 marks]  
 

  

  

  

  

  

 

( ) ( )
6

1 1r r− +
 =  

 
 

3 (b)  Use the method of differences to show that 
 

( )( ) ( )
2

=2

6 + +=
1 +1 2 +1−∑

r

n an bn c
r r n n

 

 
where a , b and c are integers. 

[4 marks] 
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Turn over for the next question 
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4   
Solve the differential equation 
 

2

2
d d4 + 4 + = 0
d d

y y y
x x

 

 

given that  y =  4  and  1d
d
y
x
=   when  x =  0   

[6 marks] 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

Answer 
 

 
6 
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5 (a)  Explain why  
   e

ln dx x∫
2

0

   is an improper integral.  

[1 mark]  
 

 
 

  

 
 

5 (b) 
 

Evaluate  
   e

ln dx x∫
2

0

   showing the limiting process used. 

[6 marks]  
 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 
Answer  

 
7 
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Do not write 
outside the  

box   6 (a)  A student states that vectors  r , m  and n  can be found such that 
 

× =r m n     and    12• =m n  
 

Explain why the student is not correct. 
[2 marks] 

  

  

  

 

  6 (b)  The points A  , B  and C  have position vectors a , b  and c respectively relative to an 
origin O , where 
 

2= + −pa i j k        4 7= − + −pb i j k          4 2 9= − + −pc i j k  

and  p  is real. 
 
The position vectors a , b  and c define the edges of a parallelepiped. 
 
The volume of the parallelepiped is 17 cubic units. 
 
 
Use a scalar triple product to find the four possible values of p 

[6 marks] 
  

  

  

  

  

  

  

  

  

  

  

 

Answer 
 

 
8 
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7   The matrix  
3 2
5 p

− 
=  
 

M    where p is a constant.   

 
The matrix M  has two distinct eigenvalues. 
 
One of the eigenvalues is 1 

 

7 (a)  Find the other eigenvalue. 
[4 marks]  

 

  

  

  

  

  

  

  

  

  

 
Answer  

 

7 (b)  Find an eigenvector for each eigenvalue. 
[3 marks]  

 

 
  

  

  

  

  

  

 

Eigenvectors 

 

and 

  
7 
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box   8 (a)   By direct expansion, or otherwise, show that 
 

2 4
2 2 3 2 4 8
2 3 3 5

−
− − = − + +
+

k k
k k k pk q
k k

2       

 
where  p  and  q  are positive integers. 

[2 marks]  
 

  

  

  

  

  

  

  

  

  

 

8 (b)  A system of equations is given such that 
 

( )2 4kx y k z a+ + − =  

( ) ( )2 2 3 2 4k x k y z b− + − + =  

( )2 3 3 5k x ky z c+ + + =  

 
where k , a , b and c are real constants. 

 
8 (b) (i) Find the two values of k for which the system of equations does not have a unique 

solution. 
[2 marks]  
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Answer  

 

  8 (b) (ii) For the integer value of k  found in part (b)(i), find an expression for b in terms of a and c  
such that the system of equations is consistent. 

[3 marks]  
 

  

  

  

  

  

  

  

  

  

  

  

 
b=  

 
  

 
7 
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Do not write 
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box 9 (a)  Explain why the cubic equation 
 

8 0ax bx cx+ + + =3 2  
 
where a , b and c are real numbers, cannot have exactly one non-real root. 

[1 mark]  
 

  

  

  

 

9 (b)  The equation 
 

i2 4 6 0z pz z+ + − =3 2  
 
where p is a constant, has roots ,  and  

 

 
  

9 (b) (i) Show that 

( )( )( )2 2 2 3ik p+ + + = −  
 
where  k   is an integer. 

[4 marks]  
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Answer 

 

 

9 (b) (ii) Find a cubic equation which has roots  + 2 ,   + 2Įȕ ĮȖ  and  + 2ȕȖ  
 [3 marks]  

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 
8 
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box 10 (a)  Prove by induction that, for all integers 1≥n   
 

( ) cos i sin  cos i sin+ = +
n

n n  
 [5 marks]  
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box 10 (b)  Find, in terms of ʌ , the two smallest positive values of  that satisfy the equation 
 

( ) 3 i1 sin icos2 3 −=+  
[4 marks]  

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 
Answer  
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11 

  

The plane 1Π  has equation    
2 2 4
1 1 1
2 3 2

     
     = + − +     
          

 
    

 
r    

 
 

The plane 2Π  has equation    
3
1 5
2

.
− 
  = 
  

 
 

r  

 
11 (a)  Find an equation for the plane 1Π  in the form . d=r n  

[4 marks]  
 

  

  

  

  

  

  

  

 

Answer 

 

 

11 (b)  Find the acute angle between the planes 1Π  and  2Π  giving your answer 
to the nearest 0.1° 

[4 marks]  
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Answer  

 

 11 (c)  Write down a Cartesian equation of the plane 2Π   
 [1 mark] 

  

  

 
Answer  

 

 11 (d)  Find a vector equation for the line of intersection of the planes 1Π  and  2Π   giving your 
answer in the form  ( ) 0bar       =×−  

[5 marks] 
  

  

  

  

  

  

  

  

  

  

  

  

  

 

Answer 

 

 

 
14 
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box 12   It is given that   ( )ln e 1 tanxy x = + 
2 2  

 
 

12 (a) (i) Show that   ( )d 2 1 tan
d
y x
x
= +  

 [2 marks] 
   
 

 

  

  

  

  

  

  

 

12 (a) (ii) Find   d
d

y
x

4

4    in terms of  x   

[3 marks]  
 

  

  

  

  

  

  

  

  

  

 
Answer  
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 Hence, show that the first three non-zero terms in ascending powers of  x  in the 
Maclaurin series of   ( )ln e 1 tanx x + 

2 2    are 

 
42  

6
12 xxx ++  

[3 marks]  
 

 
 

  

  

  

  

  

  

 
 12 (c)  Show that   

lim
0→x

( )
8 10

2 ln cos sin

2

x x x

x x

 +
 
 + 

 

 
exists and state its value. 

[4 marks]  
 

 
 

  

  

  

  

  
 

 

  

  

 
Answer 

 
 
12 
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box 13 (a)  Use the definitions of  cosh   and  sinh   in terms of  e   and  e−   to show that 

 
2 21 sinh cosh+ =  

[3 marks]  
 

 
 

 
 

 
 

  

  

  

  

 
13 (b)  Use an integrating factor to find the general solution of the differential equation 

 

2

d 2
d 1

+ =
+

y x y
x x

 

 
Give your answer in the form  ( )fy x=   

[11 marks]  
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Answer 

 

 
14 
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box 14   A curve 1C  is given parametrically by the equations 
0.52e cosx =      and     0.52e siny =  

 
The point P  on 1C  is where 0=  
 
The point Q  on 1C  is where ʌ=  

 
 14 (a)  Find the length of the arc PQ  of the curve 1C  

 
Give your answer in an exact form. 

[7 marks]  
 

 
 

  

  

  
 

 

  

  

  

  

  

  

  

  

 
Answer 

 

 
 
14 (b)  A curve 2C  has polar equation 

 
0.52er = −1    where     0 ʌ≤ ≤  

  
The point D  on 2C  is where 0=   

 
The point E  on 2C  is where ʌ=  
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[2 marks] 

 
 
 
 
 
 
                                                                  • 
                                                     O                                     Initial line                 
 
 
 
 

14 (b) (ii) By finding the polar equation of the curve 1C , or otherwise, show that the area of the 
region bounded by 1C  and 2C  and the line segments PD  and QE  is  
 

ʌ
21 e ʌ

2
a b c + + 
 

 

 
where  a ,  b  and  c  are integers. 

 [5 marks]  
 

 
 

  

  

  

  

  

  

  

  

  

  

  

  

END  OF  QUESTIONS   
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There are no questions printed on this page 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DO  NOT  WRITE  ON  THIS  PAGE 
ANSWER  IN  THE  SPACES  PROVIDED 
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Question 
number 

Additional page, if required. 
Write the question numbers in the left-hand margin. 
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Question 
number 

Additional page, if required. 
Write the question numbers in the left-hand margin. 
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number 

Additional page, if required. 
Write the question numbers in the left-hand margin. 
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