

Please write clearly ir	i block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.
	,

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS

(9665/FM03) Unit FP2 Pure Mathematics

Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphic calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
TOTAL	

	Answer all questions in the spaces provided.
1	A curve C has equation
	$y = \tan^{-1}(x+1) + \tanh^{-1}\left(\frac{x}{2}\right)$ where $-2 < x < 2$
1 (a)	Find $\frac{dy}{dx}$ [2 marks]
	Answer
1 (b)	Hence find an equation of the normal to <i>C</i> at the point <i>P</i> on the curve given that the <i>x</i> -coordinate of <i>P</i> is 0 [3 marks]
	Answer

Turn over ►

3 (a) Express
$$\frac{6}{(r-1)(r+1)}$$
 in the form $\frac{A}{r-1} + \frac{B}{r+1}$, where A and B are integers. [2 marks]
 $\frac{6}{(r-1)(r+1)} =$
3 (b) Use the method of differences to show that
 $\sum_{r=2}^{n} \frac{6}{(r-1)(r+1)} = \frac{4n^2 + bn + c}{2n(n+1)}$
where a, b and c are integers. [4 marks]

Г

6 Turn over for the next question Turn over ►

	-
ſ.	-
	٦
	,
	ŀ

given that $y = 4$ and	d $\frac{\mathrm{d}y}{\mathrm{d}x} = 1$ when $x = 0$	
	ů,	I

4

Solve the differential equation

5	(a)	Explain why $\int_{0}^{e^2} \ln x dx$ is an improper integral.	[1 mark]
5	(b)	Evaluate $\int_{0}^{e^2} \ln x dx$ showing the limiting process used.	6 marks]
		Answer	

			Do not write outside the
6	(a)	A student states that vectors \mathbf{r} , \mathbf{m} and \mathbf{n} can be found such that	box
		$\mathbf{r} \times \mathbf{m} = \mathbf{n}$ and $\mathbf{m} \cdot \mathbf{n} = 12$	
		Explain why the student is not correct.	
		[2 marks]	
6	(b)	The points A , B and C have position vectors a , b and c respectively relative to an origin O , where	
		$\mathbf{a} = 2\mathbf{i} + p\mathbf{j} - \mathbf{k}$ $\mathbf{b} = -p\mathbf{i} + 4\mathbf{j} - 7\mathbf{k}$ $\mathbf{c} = -4\mathbf{i} + 2p\mathbf{j} - 9\mathbf{k}$	
		and p is real.	
		The position vectors a , b and c define the edges of a parallelepiped.	
		The volume of the parallelepiped is 17 cubic units.	
		Use a scalar triple product to find the four possible values of p	
		[6 marks]	
		A = 0.00	8
		Answer	

7		The matrix $\mathbf{M} = \begin{bmatrix} 3 & -2 \\ 5 & p \end{bmatrix}$ where <i>p</i> is a constant.		Do not write outside the box
		The matrix ${f M}$ has two distinct eigenvalues.		
		One of the eigenvalues is 1		
7	(a)	Find the other eigenvalue.	[4 marks]	
		Answer		
7	(b)	Find an eigenvector for each eigenvalue.	[3 marks]	
				[]
		Eigenvectors and		7
			Turn over ►	

8 (a)	By direct expansion, or otherwise, show that
	$\begin{vmatrix} k & 2 & k-4 \\ 2k-2 & 3k-2 & 4 \\ 2k+3 & 3k & 5 \end{vmatrix} = -8k^2 + pk + q$
	where p and q are positive integers.
	[2 marks]
8 (b)	A system of equations is given such that
8 (b)	A system of equations is given such that kx + 2y + (k - 4)z = a
8 (b)	
8 (b)	kx + 2y + (k - 4)z = a
8 (b)	kx + 2y + (k - 4)z = a $(2k - 2)x + (3k - 2)y + 4z = b$
8 (b) 8 (b)(i)	kx + 2y + (k - 4)z = a $(2k - 2)x + (3k - 2)y + 4z = b$ $(2k + 3)x + 3ky + 5z = c$

			Do not write outside the box
		Answer	
8	(b) (ii)	For the integer value of k found in part (b)(i) , find an expression for b in terms of a and c	
		such that the system of equations is consistent. [3 marks]	
		b=	7

9	(a)	Explain why the cubic equation	
		$ax^3 + bx^2 + cx + 8 = 0$	
		where a , b and c are real numbers, cannot have exactly one non-real root.	[1 mark]
9	(b)	The equation	
		$2z^3 + pz^2 + 4z - 6i = 0$	
		where p is a constant, has roots $lpha$, eta and γ	
9	(b) (i)	Show that	
9	(b) (i)	$(\alpha\beta+2)(\alpha\gamma+2)(\beta\gamma+2) = k-3ip$	
		where k is an integer.	[4 marks]
		where k is an integer.	[4 marks]
		where <i>k</i> is an integer.	[4 marks]
		where <i>k</i> is an integer.	[4 marks]
		where <i>k</i> is an integer.	[4 marks]
		where <i>k</i> is an integer.	[4 marks]
		where <i>k</i> is an integer.	[4 marks]
		where <i>k</i> is an integer.	[4 marks]
		where <i>k</i> is an integer.	[4 marks]
		where <i>k</i> is an integer.	[4 marks]
		where k is an integer.	[4 marks]
		where k is an integer.	[4 marks]

9 (b) (i	i) Find a cubic equation which has roots $\alpha\beta+2$, $\alpha\gamma+2$ and $\beta\gamma+2$	Do not w outside t box [3 marks]
	Answer	8

10 (a)	Prove by induction that, for all integers $n \ge 1$		Do not wri outside th box
	$\left(\cos\theta + \mathrm{i}\sin\theta\right)^n = \cos n\theta + \mathrm{i}\sin n\theta$		
		[5 marks]	

IB/G/Jun22/FM03

10 (b)	Find, in terms of π , the two smallest positive values of $ heta$ that satisfy the equation	Do not write outside the box
	$2(\cos\theta + i\sin\theta)^3 = 1 - i\sqrt{3}$ [4 mark	s]
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
	Answer	9

11	The plane Π_1 has equation $\mathbf{r} = \begin{bmatrix} 2\\1\\2 \end{bmatrix} + \lambda \begin{bmatrix} 2\\-1\\3 \end{bmatrix} + \mu \begin{bmatrix} 4\\1\\2 \end{bmatrix}$ The plane Π_2 has equation $\mathbf{r} \cdot \begin{bmatrix} -3\\1\\2 \end{bmatrix} = 5$	Do not write outside the box
11 (a)	Find an equation for the plane Π_1 in the form $\mathbf{r.n} = d$ [4 marks]	
	Answer	
11 (b)	Find the acute angle between the planes Π_1 and $\ \Pi_2$ giving your answer to the nearest 0.1° [4 marks]	

	Answer	
11 (c)	Write down a Cartesian equation of the plane Π_2	[1 mark]
	Answer	
11 (d)	Find a vector equation for the line of intersection of the planes Π_1 and Π_2 g answer in the form $(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = 0$	iving your [5 marks]
	Answer	

IB/G/Jun22/FM03

Do not write
outside the
box

12
 It is given that
$$y = \ln \left[e^{2x} (1 + \tan^2 x) \right]$$
 Duration weight where the set of the se

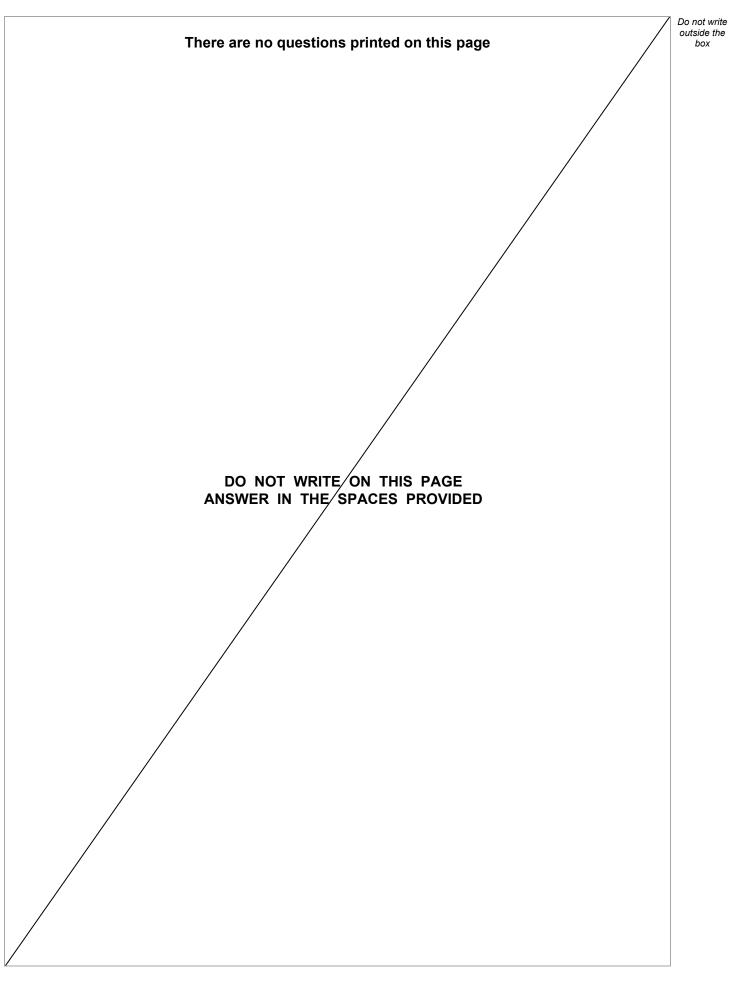
12 (b)	Hence, show that the first three non-zero terms in ascending powers of x in the Maclaurin series of $\ln\left[e^{2x}(1+\tan^2 x)\right]$ are	Do not write outside the box
	$2x + x^2 + \frac{1}{6}x^4$	
	o [3 marks]	
12 (c)	Show that $\lim_{x \to 0} \left[\frac{2\ln(\cos x) + x\sin x}{2\sqrt{x^8 + x^{10}}} \right]$	
	exists and state its value. [4 marks]	
	Answer	12

Turn over ►

13 (a) Use the definitions of
$$\cosh \theta$$
 and $\sinh \theta$ in terms of c^a and $c^{-\theta}$ to show that

$$1+\sinh^2 \theta = \cosh^2 \theta$$
[3 marks]
[4 marks]
[5 marks]
[5 marks]
[6 marks]
[6 marks]
[6 marks]
[6 marks]
[7 m

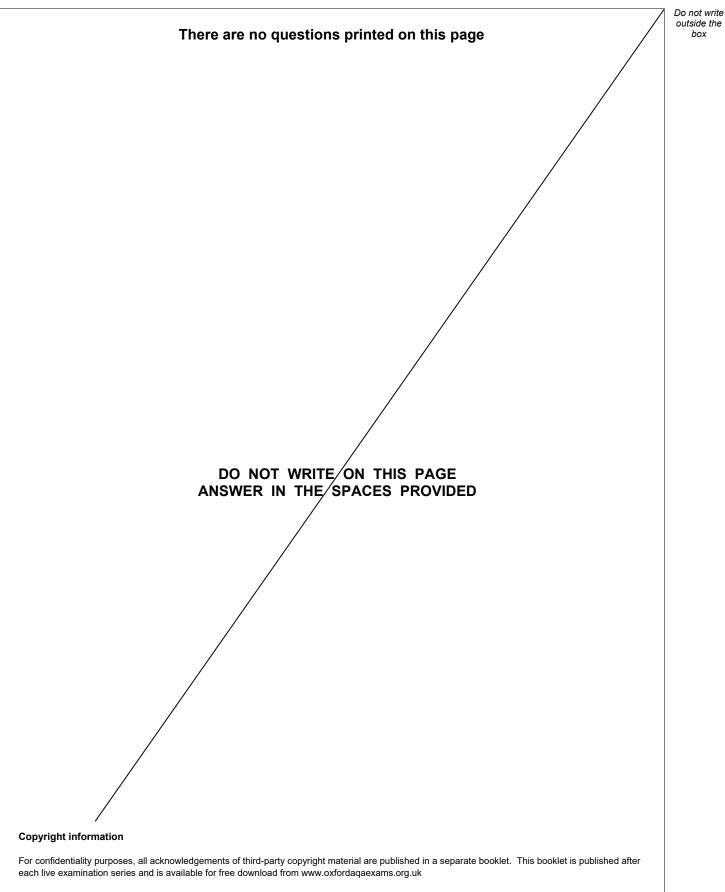
	Da sat "
	Do not write outside the box
Answer	14



		Do no
14	A curve C_1 is given parametrically by the equations	outsi b
	$x = 2e^{0.5\theta}\cos\theta$ and $y = 2e^{0.5\theta}\sin\theta$	
	The point <i>P</i> on C_1 is where $\theta = 0$	
	The point Q on C_1 is where $\theta = \pi$	
14 (a)	Find the length of the arc PQ of the curve C_1	
	Give your answer in an exact form.	[7 marks]
	Answer	
14 (b)	A curve C_2 has polar equation	
()		
	$r = 2e^{0.5\theta} - 1$ where $0 \le \theta \le \pi$	
	The point D on C_2 is where $\theta = 0$	
	The point <i>E</i> on C_2 is where $\theta = \pi$	

14	(b) (i)	Sketch the curve C_2	Do not write outside the box
	(~) (-)	[2 marks]	
		·	
		O Initial line	
14	(b) (ii)	By finding the polar equation of the curve C_1 , or otherwise, show that the area of the region bounded by C_1 and C_2 and the line segments <i>PD</i> and <i>QE</i> is	
		$\frac{1}{2}\left(a\mathrm{e}^{\frac{\pi}{2}}+b+c\pi\right)$	
		where a , b and c are integers. [5 marks]	
			14
		END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.



Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 Oxford International AQA Examinations and its licensors. All rights reserved.

