

Please write clearly in	block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.	

INTERNATIONAL AS **MATHEMATICS**

(9660/MA01) Unit P1 Pure Mathematics

Monday 3 January 2022	07:00 GMT	Time allowed: 1 hour 30 minutes
-----------------------	-----------	---------------------------------

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

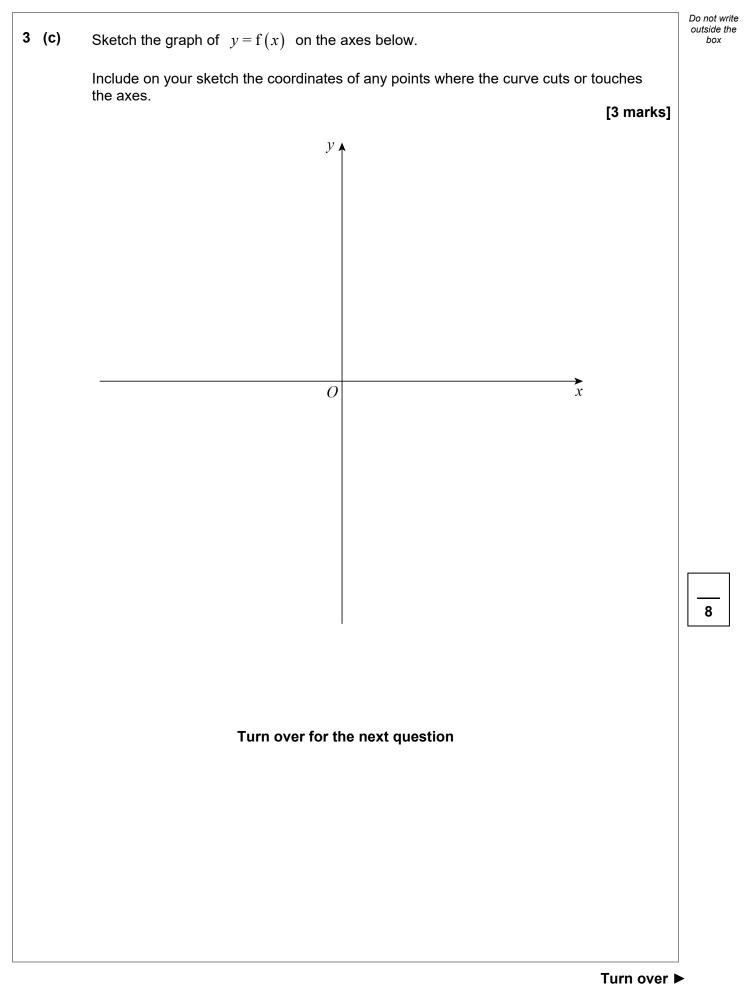
- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

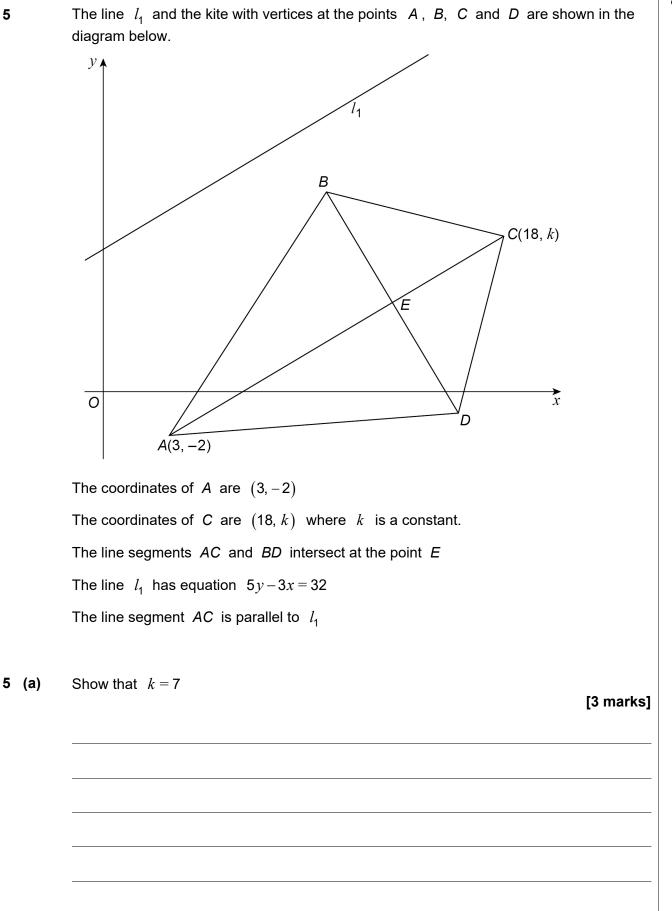
For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
TOTAL		

		Answe	r all questions in the	spaces provided.		Do i out
1	Т	he curve C with equa	ation $y = (x-7)^2 - 3$	35 has a vertex at the	point (p,q)	
1 (a)	(i) S	State the value of p				
	С	Circle your answer.			[1 mark]
		-35	-7	7	35	
1 (a)		State the value of q				
	С	Circle your answer.			[1 mark]
		-35	-7	7	35	
1 (b)	Т	he curve C is mappe	ed onto the curve D	by a reflection in the <i>y</i>	z-axis.	
	F	ind the equation of <i>D</i>				
	G	Give your answer in the	e form $y = x^2 + bx + bx$	c where b and c and c	-	
					[2	marks]
	—					
	_					
	_					
	_					
			Answer			



2	(a)	The constants a and b satisfy the equations	Do not write outside the box
		$(7^4)^a = 49$ and $\frac{3^{13a}}{3^{8b}} = 81$	
		Find the value of a and the value of b [3 mark	s]
			_
			_
			_
			_
		a = b =	_
2	(b)	Simplify	
		$3x^5 \times \frac{2}{y^9} \times \sqrt[4]{16x^{12}y^8}$	
		Give your answer in the form $kx^m y^n$ where k , m and n are constants. [3 mark]	s]
			_
			_
		Answer	6
		Turn ove	er ►

3		It is given that	Do not writ outside the box
		$f(x) = x^3 + 9x^2 + 15x + k$	
		where k is a constant.	
		When $f(x)$ is divided by $(x-6)$ the remainder is 605	
3	(a)	Use the Remainder Theorem to show that $k = -25$ [2 marks]	
3	(b)	$f(x)$ can be written in the form $f(x) = (x-1)(x^2+bx+c)$, where <i>b</i> and <i>c</i> are constants and $b > 0$	
3	(b) (i)	Write down the value of c [1 mark]	
		c=	
3	(b) (ii)	The discriminant of $x^2 + bx + c$ is zero.	
		Use this to find the value of b [2 marks]	
		<i>b</i> =	

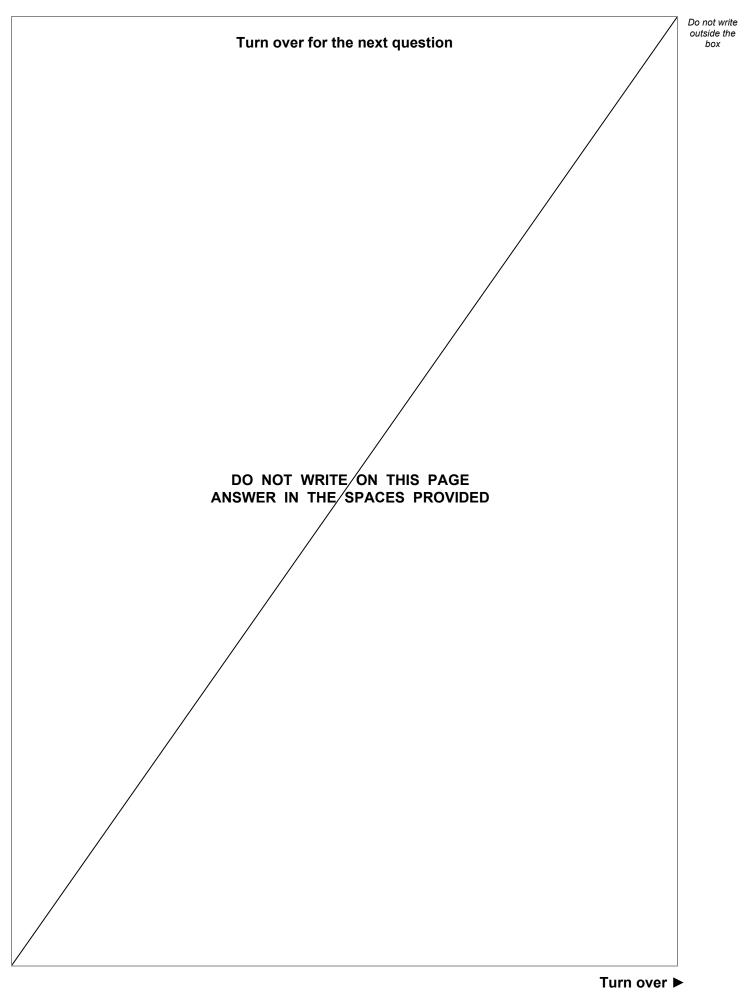


		Do not
4	A car manufacturer produced electric cars as part of a project.	outsia
	Production of cars started in Month 1 in which a cars were produced.	
	The number of cars produced each month forms an arithmetic sequence with first term a and common difference d	
	The number of cars produced in Month 19 is equal to half the number of cars produced in Month 3	
	There were 252 cars produced in Month 14	
4 (a)	Find the value of <i>a</i> and the value of <i>d</i> [4 marks]	
	a = d =	

Answer Turn over for the next question	er 🕨
Answer	
	6
	_
Find the total number of cars produced over the 34-month period. [2 marl	e]
4 (b) Production of cars stopped at the end of Month 34	Do not write outside the box

Do not write outside the box

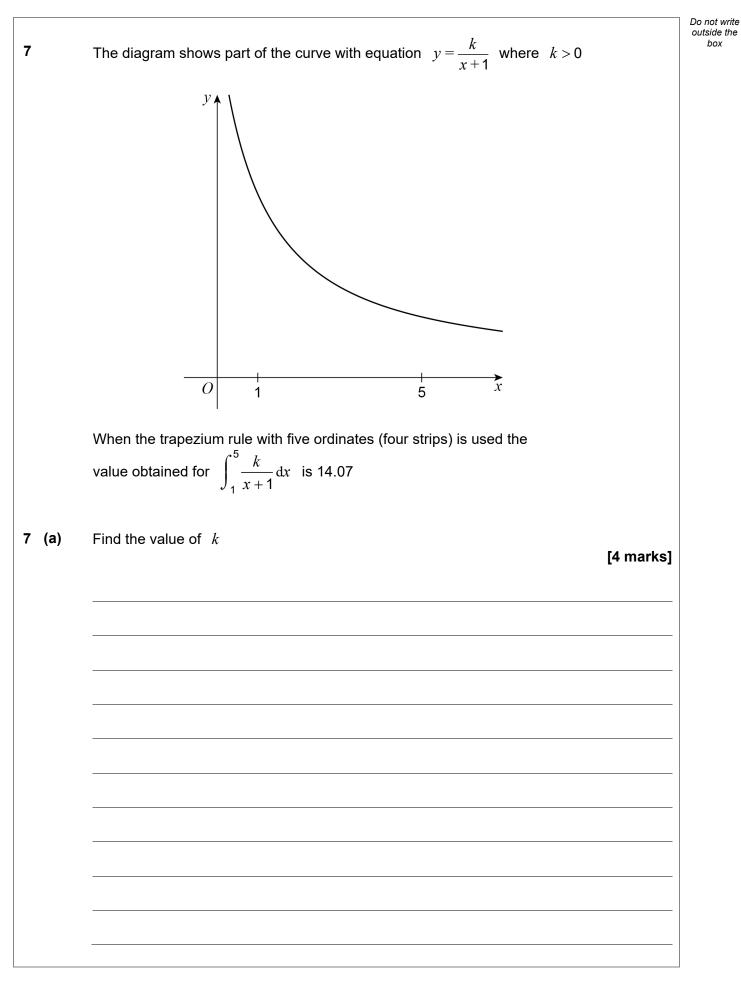
5	(b)	The point <i>E</i> has coordinates (13, 4) and the line <i>BC</i> has length $2\sqrt{17}$	
		[AC is the perpendicular bisector of BD for the kite ABCD]	
5	(b) (i)	Show that the lines <i>BE</i> and <i>CE</i> are equal in length.	[3 marks]
5	(b) (ii)	Find the coordinates of B and the coordinates of D	[3 marks]
		B D	
		Question 5 continues on the next page	



IB/G/Jan22/MA01

Do not write outside the box

5	(b) (iii)	The line l_2 passes through the points <i>B</i> and <i>D</i>	Do not write outside the box
		Find the coordinates of the point at which l_1 and l_2 intersect. [5 marks]	
		Answer	14



6	The curve <i>C</i> is such that any point (x, y) on <i>C</i> satisfies the equation	Do not outside bo.
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 4x - 5$	
6 (a)	The point <i>P</i> lies on <i>C</i>	
	<i>P</i> is a stationary point and at <i>P</i> , $\frac{d^2 y}{dx^2} = 11$	
6 (a) (i) State with a reason whether <i>P</i> is a minimum point or a maximum point.	[1 mark]
6 (a) (ii) It is given that $\frac{\mathrm{d}y}{\mathrm{d}x} = 2x^2 - 5x + d$	
	Show that $d = -12$	[2 marks]

6	(b)	The point $Q(a, 14)$, where $a > 0$, lies on C	Do not write outside the box
		The normal to <i>C</i> at <i>Q</i> has gradient $-\frac{1}{30}$	
		Find the equation of C [7 marks]	
		Answer	10

			Do not write outside the box
7	(b) (i)	State with a reason whether the value of 14.07 is an over-estimate or an under-estimate of the actual value of $\int_{1}^{5} \frac{k}{x+1} dx$ [2 marks]	
7	(b) (ii)	Explain how, while still using the trapezium rule, a better approximation to the actual value of $\int_{1}^{5} \frac{k}{x+1} dx$ could be found. [1 mark]	
			7

IB/G/Jan22/MA01

8	(a)	The function f is defined by	Do not write outside the box
		$f(x) = x^3 - 6x^2 + 57x - 9$	
8	(a) (i)	Find $f'(x)$ [1 mark]	
		f'(x) =	
8	(a) (ii)	By writing your expression for $f'(x)$ in the form $a(x+b)^2 + c$, where a , b and c are integers, prove that f is an increasing function for all real values of x [5 marks]	

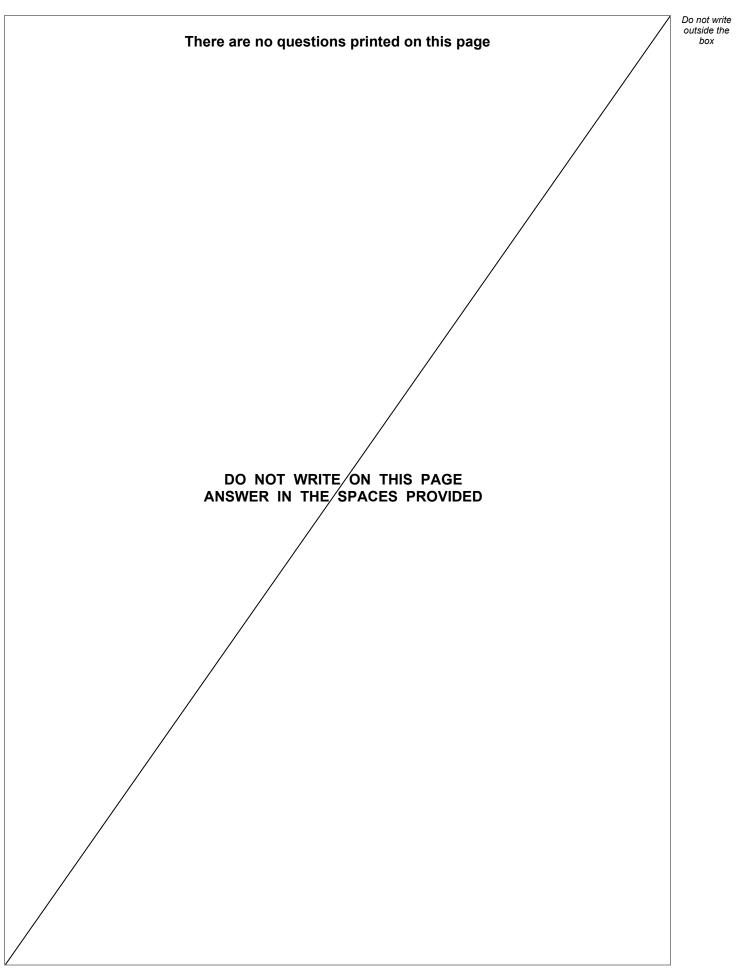
8	(b)	The point $P(16, 13)$ lies on the curve with equation	Do not write outside the box
		$y = \frac{1}{4}x^{\frac{3}{2}} + 16x^{-\frac{1}{2}} - 7$ where $x > 0$	
		Find the exact coordinates of the point where the tangent to the curve at P intersects the <i>x</i> -axis.	
		[5 marks]	
		Answer	11

П				
	ļ			
	1	-	8	

9

The first four terms in ascending powers of x in the expansion of $(1+ax)^n$ are $1-\frac{14}{5}x+\frac{84}{25}x^2-bx^3$ where a and b are non-zero constants and n is a positive integer. Show that n=7 and find the value of a and the value of b[7 marks]

Do not write outside the box 7 *b* = a =Turn over for the next question Turn over ►



10	In a geometric series the first term is 12 and the second term is $8 - x$
	The sum to infinity of this geometric series has a finite value.
10 (a)	Find the possible values of x [3 marks]
	Answer
10 (b)	In the case when x must also be positive, find the possible values of the sum to infinity of the geometric series.
	[4 marks]

	Do not write outside the
	box
Answer	7
END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2022 Oxford International AQA Examinations and its licensors. All rights reserved.

