

INTERNATIONAL AS MATHEMATICS MA02

(9660/MA02) Unit PSM1 Pure Mathematics, Statistics and Mechanics

Mark scheme

January 2022

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordagaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2022 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

M Mark is for method

m Mark is dependent on one or more M marks and is for method

A Mark is dependent on M or m marks and is for accuracy

B Mark is independent of M or m marks and is for method and accuracy

E Mark is for explanation

√ or ft Follow through from previous incorrect result

CAO Correct answer only

CSO Correct solution only

AWFW Anything which falls within

AWRT Anything which rounds to

ACF Any correct form

AG Answer given

SC Special case

oe Or equivalent

A2, 1 2 or 1 (or 0) accuracy marks

–x EE Deduct x marks for each error

NMS No method shown

PI Possibly implied

SCA Substantially correct approach

sf Significant figure(s)

dp Decimal place(s)

Q	Answer	Marks	Comments
1(a)			Sinusoidal curve of correct form with one minimum below the <i>x</i> -axis and one maximum above, both with the correct amplitude
		B1	Ignore any section of the curve drawn outside of $0^{\circ} \le x \le 360^{\circ}$
	See artwork below		The curve must intersect the x -axis at exactly two points; once between 0° and 90° and again between 180° and
		B1	270° Both correct coordinates for intercepts with the <i>x</i> -axis given and no others
		B1	Condone values only indicated Correct coordinates of intercept with the <i>y</i> -axis
			Condone value only indicated
(0, 0.5) (30°, 0) (210°, 0) (210°, 0) 270° 360° x			
	<u> </u>		1
		3	

Q	Answer	Marks	Comments
1(b)	$\frac{360^{\circ}}{4} \left[= 90^{\circ} \right]$ or $360^{\circ} = \frac{4 \times 180^{\circ}}{k} \mathbf{oe}$	M 1	PI Dividing the period of f by 4 Could be implied by indicating that the graph of $y = \tan x$ is mapped onto the graph of $y = \tan(kx)$ by a stretch of $\frac{1}{2}$ in the x-direction. Condone 2π in place of 360° (i.e. working in radians)
	k = 2	A 1	CAO Accept $k = -2$ or $k = \pm 2$
		2	

Question 1 Total	5	
------------------	---	--

Q	Answer	Marks	Comments
2(a)			
	$BD^{2} = 9.1^{2} + 10.3^{2} - 2 \times 9.1 \times 10.3 \times \cos 0.9$	М1	Correct substitution into the Cosine Rule May be partially evaluated
	$BD^2 = $ 72.3 $[7299]$		
	or		AG CAO
	[BD =] 8.50[723]		Correct value of BD ² rounded or truncated to at least one decimal place, or correct value of BD rounded
	and	A 1	or truncated to at least two decimal places before AG
	8.5 [cm]		
		2	

Q	Answer	Marks	Comments
2(b)	$[\angle BDC =] \frac{5.1}{8.50723} [= 0.59948]$ oe		
	and	B1	Condone <i>BD</i> = 8.5
	$[\angle BDC =] 0.6 [radians]$		
		1	

Q	Answer	Marks	Comments
2(c)	$\left[\frac{1}{2}r^2\theta = \right] \frac{1}{2} \times (8.50723)^2 \times 0.59948$	M1	Correct expression for area of sector BCD Condone $BD = 8.5$ and $\angle BDC = 0.6$
	[Area of Sector =] 21.69344 [cm ²]	A 1	AWRT 21.7 PI by correct final answer or 1.28
	[Area of Triangle =] $\frac{1}{2} \times (8.50723)^{2} \times \sin 0.59948$	M1	Correct expression for area of triangle BCD Condone $BD = 8.5$ and $\angle BDC = 0.6$
	[Area of Triangle =] 20.41719 [cm ²]	A 1	AWRT 20.4 PI by correct final answer or 1.28
	[Shaded Area =] 1.3 [cm ²]	A 1	CAO
		5	

Question 2 Total	8	
	•	

Q	Answer	Marks	Comments
3(a)	$\frac{17-5}{9-k}$	B1	PI Correct expression in terms of k for the gradient of QR
	$\frac{17-5}{9-k} \times \frac{1}{3} = -1$	M1	oe Use of $m \times m' = -1$ and their gradient of QR to form an equation in k
	3k-27=12 oe		AG CAO
	and	A 1	Must be a further line of working: linear equation in k and required result
	k = 13		stated
3(a) Alt	- 3	B1	Correct gradient of <i>QR</i> PI in later working.
	y = -3x + 44	M 1	oe Correct equation of the line QR
	5 = -3k + 44 oe and $k = 13$	A 1	CSO Substitutes the coordinates of <i>R</i> into the equation of the line <i>QR</i> and AG
		3	

Q	Answer	Marks	Comments
3(b)(i)	$\sqrt{(13-8)^2+(5-10)^2}$	M1	oe Correct expression for the radius unsimplified
	$r = 5\sqrt{2}$ or $\sqrt{50}$	A 1	Exact value only
		2	

Q	Answer	Marks	Comments
3(b)(ii)	$(x-8)^2 + (y-10)^2 = 50$	B1ft	ft their r^2 provided it is an exact value.
		1	

Q	Answer	Marks	Comments
3(c)(i)	$(x-4)^2 + + (y+3)^2 +$ [=0]	M1	Attempts to complete the square twice by, for example $(x \pm 4)^2$ and $(y \pm 3)^2$
	(4, -3)	A 1	Condone not given as coordinates but must be clearly identified
		2	

Q	Answer	Marks	Comments
3(c)(ii)	Translation	E1	Independent. Correctly identifies the type of transformation
	4 13	E1ft	Correct vector Must be given in vector form ft their centre from part (c)(i)
		2	

Question 3 Total	10	

Q	Answer	Marks	Comments
4(a)	$[\alpha =] 22^{\circ}$	B1	CAO
	$[\alpha =] 68^{\circ}$	B1	CAO SC1 Both correct values of a given but neither rounded to the nearest degree. $\alpha = 22.213502^{\circ}$ $\alpha = 67.786498^{\circ}$
		2	

Q	Answer	Marks	Comments
4(b)(i)	$\frac{10}{\sin x} - 3 \frac{\sin x}{\cos x} = \frac{11\cos x}{\sin x}$	M1	PI in later working. Use of $\tan x = \frac{\sin x}{\cos x}$ obtaining a correct equation in $\sin x$ and $\cos x$
	$10-3\frac{\sin^2 x}{\cos x} = 11\cos x$ or $10\cos x - 3\sin^2 x = 11\cos^2 x$	M 1	Manipulation to include $\sin^2 x$ Must be seen
	$10-3\frac{(1-\cos^2 x)}{\cos x} = 11\cos x$ or $10\cos x - 3(1-\cos^2 x) = 11\cos^2 x$ or $8\cos^2 x + 3(\cos^2 x + \sin^2 x) - 10\cos x = 0$ and $8\cos^2 x - 10\cos x + 3 = 0$	A 1	Clear use of $\cos^2 x + \sin^2 x = 1$ and required result stated Be convinced. AG
		3	

Q	Answer	Marks	Comments
4(b)(ii)	$\left[\cos x = \right] \frac{1}{2} \text{and} \left[\cos x = \right] \frac{3}{4}$	B1	PI Both correct roots
	$\cos(\theta - 15^{\circ}) = \frac{1}{2} \text{or} \left[\theta - 15^{\circ} = \right] \cos^{-1}\left(\frac{1}{2}\right)$ or $\cos(\theta - 15^{\circ}) = \frac{3}{4} \text{or} \left[\theta - 15^{\circ} = \right] \cos^{-1}\left(\frac{3}{4}\right)$	М1	PI by 41.4[09622]° or 60° or a correct angle q ft their roots.
	$[\theta=]$ 56.4°	A 1	CAO
	$[\theta=]$ 75 $^{\circ}$	A 1	CAO Condone 75.0° If both correct answers given award A1A0 if their final answer includes incorrect angle(s) in the given interval.
		4	

Question 4 Total	9	

Q	Answer	Marks	Comments
5(a)	$log_7 7^{p-5} = log_7 9$ or $p - 5 = log_7 9$	M1	PI in later working. Coordinates substituted into the equation and _{log7} of both sides taken
	$p-5$ Or $2\log_7 3$	M1	PI Correct application of a logarithm rule to one term
	$[p=] 5+2\log_7 3$	A 1	Condone log instead of log ₇
		3	

Q	Answer	Marks	Comments
5(b)	$[8=]\log_n n^8$	B1	PI Writing 8 as $\log_n n^8$
	$8 + \log_n k + \log_n (2y)^4 = \log_n (n^2 y)^6$	M1	oe One correct use of logarithm rule in an equation. Powers may be partially manipulated
	(2,4)		oe One correct use of second logarithm rule in an equation.
	$\log_n\left(n^8k\left(2y\right)^4\right) = \log_n\left(n^2y\right)^6$ M1	М1	Powers may be partially manipulated. Must have single logarithm on both sides
	$\left[\log_n\left(n^8k(2y)^4\right) = \log_n\left(n^2y\right)^6\right]$ $\Rightarrow n^8k(2y)^4 = \left(n^2y\right)^6$ $\Rightarrow 16n^8ky^4 = n^{12}y^6$ $\Rightarrow y^2 = \frac{16n^8k}{n^{12}}$	m1	\mathbf{oe}_{\log_n} correctly eliminated and rearranged to isolate term in y Dependant on $\mathbf{M1}$ $\mathbf{M1}$ being awarded
	$y = \frac{4\sqrt{k}}{n^2}$	A 1	CAO Accept $y = 4k^{\frac{1}{2}}n^{-2}$
		5	

Q	Answer	Marks	Comments
5(b) ALT 1	$[8=]\log_n n^8$	В1	PI Writing 8 as its equivalent in \log_n
	$\begin{bmatrix} 8 + \log_n k + \log_n (2y)^4 = 6(\log_n (n^2) + \log_n y) \\ \Rightarrow 8 + \log_n k + \log_n (2y)^4 = 6\log_n (n^2) + 6\log_n y \end{bmatrix}$ $\Rightarrow 8 + \log_n k + \log_n (2y)^4 = \log_n (n^2)^6 + \log_n y^6$	M1	oe One correct use of logarithm rules in an equation. Powers may be partially manipulated. Must have correctly manipulated the coefficient 6
	$\left[\log_n n^8 + \log_n k + \log_n (2y)^4 - \log_n y^6 = \log_n (n^2)^6\right]$ $\Rightarrow \log_n \left(\frac{n^8 k (2y)^4}{y^6}\right) = \log_n (n^2)^6$	М1	oe One correct use of different logarithm rules in an equation Powers may be partially manipulated. Must have single logarithm on both sides
	$\frac{n^8k(2y)^4}{y^6} = (n^2)^6$ $\Rightarrow n^8k(2y)^4 = (n^2)^6 y^6$ $\Rightarrow 16n^8ky^4 = n^{12}y^6$ $\Rightarrow y^2 = \frac{16n^8k}{n^{12}}$	m1	oe log, correctly eliminated and rearranged to isolate term in y Dependant on M1 M1 being awarded
	$y = \frac{4\sqrt{k}}{n^2}$	A 1	CAO Accept $y = 4k^{\frac{1}{2}}n^{-2}$
		5	

Q	Answer	Marks	Comments
5(b) ALT 2	$[8=]\log_n n^8$	B1	PI Writing 8 as its equivalent in log _n
	$8 = \log_n (n^2 y)^6 - \log_n k - \log_n (2y)^4$	M1	oe One correct use of logarithm rule in an equation. Powers may be partially manipulated
	$8 = \log_n \left[\frac{\left(n^2 y \right)^6}{k \left(2 y \right)^4} \right]$	М1	oe One correct use of second logarithm rule in an equation. Powers may be partially manipulated. Must have single logarithm on the right-hand side
	$n^{8}k(2y)^{4} = (n^{2}y)^{6}$ $\Rightarrow 16n^{8}ky^{4} = n^{12}y^{6}$ $\Rightarrow y^{2} = \frac{16n^{8}k}{n^{12}}$	m1	\mathbf{oe}_{\log_n} correctly eliminated and rearranged to isolate term in y Dependant on $\mathbf{M1}$ $\mathbf{M1}$ being awarded
	$y = \frac{4\sqrt{k}}{n^2}$	A 1	CAO Accept $y = 4k^{\frac{1}{2}}n^{-2}$
		5	

_		
Question 5 Total	8	

Q	Answer	Marks	Comments
6(a)	k + 4k + 9k + 16k	M1	oe Award for $30k$ seen.
	$k + 4k + 9k + 16k = 1$ oe and $k = \frac{1}{30}$	A 1	AG Sets the sum of the four probabilities in terms of k equal to 1, leading to correct final answer
		2	

Q	Answer	Marks	Comments
6(b)	$P(X \ge 3) = \frac{5}{6}$	B1	oe AWRT 0.833
		1	

Q	Answer	Marks	Comments
6(c)	$E\left(\frac{1}{X^3}\right) = \frac{1}{1^3} \times \frac{1}{30} + \frac{1}{2^3} \times \frac{4}{30} + \frac{1}{3^3} \times \frac{9}{30} + \frac{1}{4^3} \times \frac{16}{30}$	M1	Applies formula PI by final answer of AWRT 0.069
	$=\frac{5}{72}$	A 1	oe Must be exact value.
		2	

Q	Answer	Marks	Comments
6(d)	$E(X-Y) = E(X) - E(Y) = \frac{10}{3} - 10$	M1	PI by correct final answer
	$=-\frac{20}{3}$	A 1	oe, AWRT −6.67
		2	

Question 6 Total	7	
------------------	---	--

Q	Answer	Marks	Comments
7(a)	$[P(A \cap B) = P(A) + P(B) - P(A \cup B)]$ $P(A \cap B) = 0.2 + 0.35 - 0.48$	M1	oe
r(a)	$P(A \cap B) = 0.07$	A 1	
		2	

Q	Answer	Marks	Comments
7(b)	A and B are not mutually exclusive as $P(A \cap B) \neq 0$	E1	Condone 'no' as statement and a correct reason
		1	

Q	Answer	Marks	Comments
7(.)	$P(B A) = \frac{0.07}{0.2}$	M1	PI
7(c)	P(B A) = 0.35	A 1	
		2	

Q	Answer	Marks	Comments
7(d)	A and B are independent as $P(B A) = P(B)$	E1	Condone 'yes' as statement and $P(B A) = P(B)$ or $P(A \cap B) = P(A) \times P(B)$
		1	

Question 7 Total	6	
------------------	---	--

Q	Answer	Marks	Comments
8(a)(i)	E(X) = p	B1	
		1	

Q	Answer	Marks	Comments
8(a)(ii)	$Var(X) = p - p^2 \text{or} p(1 - p)$	B1	
		1	

Q	Answer	Marks	Comments
8(b)	$E\bigg(\sum_{i=1}^n X_i\bigg) = np$	B1ft	PI in later working. ft their answer from part (a)(i)
	Var $\left(\sum_{i=1}^{n} X_i\right) = np(1-p)$ $np = 6.25$ and $np(1-p) = 4.6875$ $6.25(1-p) = 4.6875$	B1ft M1	oe PI in later working. ft their answer from part (a)(ii) Forms two equations in terms of n and p using their expectation and variance, and correctly eliminates p or n PI by correct value of p or n
	p = 0.25 $n = 25$	A1 A1	Allow q in place of $1-p$
		5	

Question 8 Total	7	
------------------	---	--

Q	Answer	Marks	Comments
9(a)	10[Ns]	B1	
		1	

Q	Answer	Marks	Comments
9(b)	$(5\times2)-(-1.5\times2)$	M1	oe Condone one sign error for M1
	13 [N s]	A 1	
		2	

Question 9 Tot	1 3
----------------	-----

Q	Answer	Marks	Comments
10	$T - 0.2 \times 9.8 = 0.2 \times 1.25$	M1	PI in later working. Correct equation of motion for P
	$m \times 9.8 - T = m \times 1.25$	M1	PI in later working. Correct equation of motion for Q
	9.8m - 1.96 = 0.25 + 1.25m or $9.8m - 2.21 = 1.25m$	M1	Forms correct equation in m only, possibly by adding both equations of motion or by finding $T = 2.21$ and using it to form the equation of motion for Q
	m = 0.26	A 1	AWRT
		4	

Question 10 Tota	4	
------------------	---	--

Q	Answer	Marks	Comments
11(a)	$\left[a = \frac{\mathrm{d}v}{\mathrm{d}t} = \right] \frac{3t^2}{2} - 6t + 5$	M1	oe At least two correct terms.
	$\frac{3^2}{2} - 6^2 + 5$	m1	Substitutes $t = 2$ into their differentiated expression
	$-1 \left[m s^{-2} \right]$	A 1	CAO
		3	

Q	Answer	Marks	Comments
11(b)	$\frac{t^3}{2} - 3t^2 + 5t = \frac{t}{2} \left(t^2 - 6t + 10 \right)$	M 1	oe Factorising by t or attempt to complete the square of the quadratic. PI by $t^2 - 6t + 10$
	$\left[\frac{t}{2}\left(\begin{array}{c} \left(t-3\right)^{2}+1\right)\right]$ or $\left[\Delta=\left]\left(-6\right)^{2}-4\times1\times10=-4\right]$	A 1	oe Correct completed square form or shows the correct discriminant is negative
	$\left[v \ge 0 \text{ or } \left(t-3\right)^2 + 1 > 0 \text{ or } \frac{t}{2}\left(t-3\right)^2 + \frac{t}{2} \ge 0\right]$ Velocity is never negative, so the particle does not change direction or As the quadratic equation has no real roots, the velocity is never zero [for $t > 0$] Hence, the particle does not change direction.	E 1	
		3	

Q	Answer	Marks	Comments
11(c)	$\left[\int \left(\frac{t^3}{2} - 3t^2 + 5t \right) dt = \right] \frac{t^4}{8} - t^3 + \frac{5t^2}{2} \left[+ c \right]$	M1	At least two terms correct.
	$\frac{4^4}{8} - 4^3 + \frac{5 \times 4^2}{2} \left[-\left(\frac{0^4}{8} - 0^3 + \frac{5 \times 0^2}{2}\right) \right]$	M1	Sight of a correct attempt to evaluate their integral between $t = 0$ and $t = 4$ PI by correct answer
	8 [m]	A 1	CAO
		3	

Question 11 Total	9	
-------------------	---	--

Q	Answer	Marks	Comments
12(a)	$\left[s = ut + \frac{1}{2}at^2\right]$		
	$150 = 0 \times 3.4 + \frac{1}{2} \times a \times 3.4^2$	М1	oe Use of one or more constant acceleration formulae to obtain a correct equation in <i>a</i>
	or		correct equation in a
	150 = 5.78a		
		A 1	AWRT 26 Correct value for the acceleration.
	26 ms ⁻²		
		B1	Independent. Correct units.
		3	

Q	Answer	Marks	Comments
12(b)	 Any correct reason, such as: Initial speed unlikely to be 0 [due to momentum of the firework or due to the explosion] The part may be moving in a direction different to the vertical 	E1	Any valid reason that implies any of $u \neq 0$, $s \neq 150$ or non-linear motion Do not award for 'answer is rounded', 'errors in the calculation' or '9.81 should be used for acceleration due to gravity'
		1	

Question 12 Total	4	
-------------------	---	--