

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS FM04

(9665/FM04) Unit FS2 Statistics

Mark scheme

January 2022

Version: 1.0 Final

221xFM04/MS

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaqaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2022 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

	Μ	Mark is for method		
	m	Mark is dependent on one or more M marks and is for method		
	Α	Mark is dependent on M or m marks and is for accuracy		
	В	Mark is independent of M or m marks and is for method and accuracy		
	E	Mark is for explanation		
\checkmark	`or ft	Follow through from previous incorrect result		
	CAO	Correct answer only		
	CSO	Correct solution only		
	AWFW	Anything which falls within		
	AWRT	Anything which rounds to		
	ACF	Any correct form		
	AG	Answer given		
	SC	Special case		
	oe	Or equivalent		
	A2, 1	2 or 1 (or 0) accuracy marks		
	– <i>x</i> EE	Deduct <i>x</i> marks for each error		
	NMS	No method shown		
	Ы	Possibly implied		
	SCA	Substantially correct approach		
	sf	Significant figure(s)		
	dp	Decimal place(s)		

Q	Answer	Marks	Comments
1(a)	z _{crit} = 2.326	B1	Condone 2.3263
		1	

Q	Answer	Marks	Comments
1(b)	$z = \frac{ 10.1 - 9.5 }{\sqrt{\frac{4.2}{100} + \frac{4.8}{120}}}$	M1 M1	 M1: Correct numerator (positive or negative) PI by correct [±] z M1: Correct denominator PI by correct [±] z
	= 2.095[29]	A1	Exact value is $\frac{6\sqrt{205}}{41}$ Allow negative value $p = 0.01807$ If M0 M0 awarded, allow SC1 for use of <i>t</i> -statistic with value [±] 2.083
	2.095 < 2.326 Therefore do not reject H ₀	B1ft	ft their critical value and their test statistic with the corresponding correct
		4	conclusion

Q	Answer	Marks	Comments
1(c)	Sample is large enough to approximate with a normal distribution	B1	Any correct assumption, such as correct reference to central limit theorem
		1	

Question 1 Total 6

Q		Answ	ver		Marks	Comments
2	H ₀ : There is no of a supporter a	o associati nd their pr	on between edicted wini	location ning team		
	H ₁ : There is an of a supporter a	association nd their pr	on between edicted wini	location ning team	B1	Both H_0 and H_1 correct
		Brazil	Germany	Other	544	At least three correct
	Host country	127.2	89.4	83.4		
	Outside the host country	84.8	59.6	55.6	A1	All correct
	$\sum \frac{(O-E)^2}{E} = \frac{(1+E)^2}{E} + \frac{(E)^2}{E} + \frac{(E)^2}$	40 – "127." "127.2" 59 – "83.4" "83.4" 48 – "59.6" "59.6"	$\frac{2^{"}}{2^{"}}^{2} + \frac{(101 + 100)}{(100 + 100)} + \frac{(72 - 100)}{(100 + 100)} + \frac{(72 - 100)}{(100 + 100)} + \frac{(80 - 100)}{(100 + 100)} + \frac{(100 + 100)}{$	$\frac{-"89.4")^{2}}{89.4"}$ $\frac{84.8")^{2}}{1.8"}$ $\frac{55.6")^{2}}{5.6"}$	m1	PI , six terms with at least three correct
	= 24.8295121				A1	AWRT 24.8, p – value of 4.06×10^{-6}
	dof = $v = (3-1)$)(2-1)=2	2		B1	РІ
	$\chi^2(0.99) = 9.21$	0			B1	Comparison may use p value, 0.01>4.06×10 ⁻⁶
	24.82>9.210), Therefo	ore reject H ₀	1		
	Sufficient evider association betw inside or outside predicted winnir	nce to sug veen the lo the host ng team	gest there is ocation of a country and	s an supporter their	A1ft	Final statement must be consistent with their test statistic
					8	

Question 2 Total8

Q	Answer	Marks	Comments

3(a)	z=1.96	B1	РІ
	$1.96 \times \frac{\sqrt{6.25}}{\sqrt{n}} = \frac{1.4}{2}$	M1	Set up correct equation with their z value
	<i>n</i> = 49	A1	
		3	

Q	Answer	Marks	Comments
3(b)(i)	(5.6,7.0)	B1	Condone 7 instead of 7.0
		1	

Q	Answer	Marks	Comments
3(b)(ii)	5.4 is not in the confidence interval, therefore reject H ₀	B1ft	ft with their interval
		1	

	Allowel	Marks	Comments
3(c)	$P\left(4.7 < \overline{X} < 6.1 \middle \mu = 5.7\right)$	M1	oe Pl
	$\frac{\sqrt{6.25}}{\sqrt{49}}$ or $\frac{5}{14}$ or 0.357[14]	B1	Use of standard error PI by use of standardisation of <i>z</i> value or $z_1 = -2.8$ or $z_2 = 1.12$ or correct answer
	$P(4.7 < \overline{X} < 6.1 \mu = 5.7) = 0.866[08]$	A1	
	1 - 0.866		
:	= 0.134	A1	CAO
		4	

Question 3 Total 9

Q	Answer	Marks	Comments
4(a)(i)	$E\left(\overline{X}\right)\left[=\frac{1}{n}n\mu\right]=\mu$ $E\left(\overline{Y}\right)\left[=\frac{1}{m}m\mu\right]=\mu$	М1	Both expectations equal to μ seen or used
	$E(T) = \frac{n}{n+m} \times \mu + \frac{m}{n+m} \times \mu = \mu$	A1	
	T is an unbiased estimator of μ	E1	
		3	

Q	Answer	Marks	Comments
4(a)(ii)	$\operatorname{Var}\left(\overline{X}\right) = \frac{\sigma^2}{n}$ and $\operatorname{Var}\left(\overline{Y}\right) = \frac{\sigma^2}{m}$	М1	Both variances seen or used
	$\operatorname{Var}(T) = \left(\frac{n}{n+m}\right)^2 \times \frac{\sigma^2}{n} + \left(\frac{m}{n+m}\right)^2 \times \frac{\sigma^2}{m}$		Must see this line of working
	$\operatorname{Var}(T) = \frac{\sigma^2}{n+m}$	A1	AG
		2	

Q	Answer	Marks	Comments
4(a)(iii)	$\operatorname{Var}(T) \to 0$ as $n \to \infty$ and $m \to \infty$	М1	oe $\operatorname{Var}(\overline{X}) \to 0 \text{ as } n \to \infty$ $\operatorname{Var}(\overline{Y}) \to 0 \text{ as } m \to \infty$
	Estimator is consistent for either sample	A1	AG Conclusion must be stated
		2	

Q	Answer	Marks	Comments
4(b)(i)	$E(S_x^2) = \sigma^2, E(S_y^2) = \sigma^2$	B1	B1 for either expectation seen or used
	$E(V) = \frac{n-1}{n+m-2} \sigma^2 + k \sigma^2$ $\frac{n-1}{n+m-2} \sigma^2 + k \sigma^2 = \sigma^2$ $k \sigma^2 = \sigma^2 - \frac{n-1}{n+m-2} \sigma^2$	М1	Must see intermediate working
	$k = \frac{m-1}{n+m-2}$	A1	AG Be convinced
		3	

Q	Answer	Marks	Comments
4(b)(ii)	Pooled [estimate of population] variance	B1	oe combined variance, composite variance
		1	

Q	Answer	Marks	Comments
4(b)(iii)	Test for the difference of two means [when the variances are unknown and may be assumed equal]	B1	Allow <i>t</i> -test [with 2 samples]
		1	

Question 4 Total 12	
---------------------	--

Q	Answer	Marks	Comments
5	$H_0: \mu_{2021} = \mu_{2020}$ $H_1: \mu_{2021} > \mu_{2020}$	B1	Both hypotheses correct
	$\begin{tabular}{ c c c c c } \hline Line & Difference \% \\ \hline A & +2.7 \\ \hline B & +2.8 \\ \hline C & -0.2 \\ \hline D & +4.2 \\ \hline E & -2.1 \\ \hline F & -1.7 \\ \hline G & +1.4 \\ \hline H & +3.1 \\ \hline \end{tabular}$	B1	Allow 1 mistake Allow negative of table values
	dof = v = 7	B1	Ы
	$\left[\text{critical value, } t_7 = \right] 1.415$	B1	
	$\overline{d} = 1.275$	B1	
	$s^{2} = \frac{1}{8-1} \left(\sum d^{2} - 8 \overline{d}^{2} \right)$	M1	PI Attempt at variance formula; allow one slip. Implied by correct answer $\sum d^2 = 51.68$
	= 5.525	A1	Accept <i>s</i> = AWRT 2.35
	$t = \frac{\overline{d}}{\frac{s}{\sqrt{8}}} = \frac{1.275}{\sqrt{\frac{5.525}{8}}}$	M1	Using their mean and variance
	t = +1.534[22]	A1	<i>p</i> -value 0.0844
	1.534 > 1.415, therefore reject H ₀	A1ft	Comparison may use p value $0.10 > 0.0844$
	Sufficient evidence to suggest the percentage of trains that arrive at stations on time has increased	E1	Correct conclusion based on their comparison
		11	

		Question 5 Total	11	
--	--	------------------	----	--

Q	Answer	Marks	Comments
6	$H_0: \sigma_A^2 = \sigma_B^2$ $H_1: \sigma_A^2 < \sigma_B^2$	B1	Both hypotheses needed Correct direction of inequality needed for H_1 Allow hypotheses in terms of σ instead of σ^2
	dof $v_A = 11, v_B = 11$	B1	PI
	F _{11,11} at 99% = 4.462	B1	
	$s_{A}^{2} = \frac{1}{12 - 1} \left(19498 - \frac{482^{2}}{12} \right) [= 12.51]$ $s_{B}^{2} = \frac{1}{12 - 1} \left(19531 - \frac{477^{2}}{12} \right) [= 51.84]$	M1	oe $\frac{413}{33}$ oe $\frac{2281}{44}$
	$\frac{s_B^2}{s_A^2} = \frac{51.84}{12.51}$	M1	oe $\frac{6843}{1652}$ condone $\frac{s_A^2}{s_B^2} = \frac{12.51}{51.84}$
	= 4.142	A1	Correct value $p - value \text{ of } 8.3 \times 10^{-3}$
	4.462 > 4.142 Do not reject H ₀	B1ft	$8.3 \times 10^{-3} < 0.01$ Allow 'accept H ₀ '
	Insufficient evidence to suggest less variance in the number of faulty chips in each box for Company A	E1	oe allow 'manufacturing process is better' or support for the company's claim is not justified
		8	

Question 6 Tota	8	
-----------------	---	--

Q	Answer	Marks	Comments
7(a)	$\mathbf{M}_{X}(t) = E(\mathbf{e}^{tX}) = (1-p)\mathbf{e}^{0} + p\mathbf{e}^{t}$	M1	
	$=(1-p)+pe^{t}$	A1	If M0 awarded, SC1 for $(1-p)+ pe^t$
		2	

Q	Answer	Marks	Comments
7(b)	$M_{S}(t) = \left((1-p) + pe^{t}\right)^{n}$	B1	
		1	

Q	Answer	Marks	Comments
7(c)(i)	$M'_{S}(t) = npe^{t} ((1-p) + pe^{t})^{n-1}$	M1	Allow one slip for differentiating the correct answer from part (b) If part (b) scored 0, then M1 for correct first derivative from their part (b)
	$M'_{S}(0) = npe^{0} ((1-p) + pe^{0})^{n-1}$	m1	Their first derivative evaluated at $t = 0$
	$E(S) = M'_{S}(0) = np$	A1	CSO
		3	

Q	Answer	Marks	Comments
7(c)(ii)	$M_{s}^{"}(t) = n(n-1)p^{2}e^{2t}((1-p)+pe^{t})^{n-2} + npe^{t}((1-p)+pe^{t})^{n-1}$	M1	M1 Correct second derivative, allow one slip
	$M_{S}''(0) = np(1-p) + n^{2}p^{2}$	A1	Correct second derivative evaluated at $t = 0$
	$\operatorname{Var}(S) = M_{S}''(0) - \left(M_{S}'(0)\right)^{2}$	M1	M1 for use of variance formula
	= np(1-p)	A1	ACF, CSO
		4	

Question 7 Total 10

Q	Answer	Marks	Comments
8(a)(i)	$\overline{X} = 2.1$ $p = \frac{2.1}{6} = 0.35$	B1	AG
		1	

Q	Answer	Marks	Comments
8(a)(ii)	94.20	B1	
	0.74	B1	
		2	

Q	Answer	Marks	Comments
8(a)(iii)	H ₀ : Binomial model is a suitable distribution	B1	
	H ₁ : Binomial model is not a suitable distribution		
	dof = v = 4	B1	PI
	$\chi^2(0.975) = 11.143$	B1	
	$\sum \frac{(O-E)^2}{E} = \frac{(40-30.17)^2}{30.17} + \frac{(103-97.46)^2}{97.46}$		
	$+\frac{\left(113-131.20\right)^2}{131.20}+\frac{\left(83-"94.20"\right)^2}{"94.20"}$	M1	Attempt to calculate statistic
	$+rac{ig(45-38.04ig)^2}{38.04}$		
	$+\frac{(16-"8.93")^2}{"8.93"}$	m1	Combines last two categories
	= 14.25	A1	AWFW [14.2, 14.3] <i>p</i> -value is 0.0141
	14.25 $>$ 11.143, therefore reject H ₀		Comparison may use p value, 0.025 > 0.0141
	Insufficient evidence to suggest binomial model is a suitable distribution	E1	Both conclusion and comparison required
		7	

Q	Answer	Marks	Comments
8(b)(i)	$\left[400 \times e^{-2.1} \times \frac{2.1^0}{0!} = \right] 48.98$	B1	
	$\left[400 \times e^{-2.1} \times \frac{2.1^5}{5!} = \right] 16.67$	B1	
		2	

Q	Answer	Marks	Comments
8(b)(ii)	dof = $v = 7 - 1 - 1 = 5$	B1	PI Final 2 categories are not combined
	$\chi^2(0.975) = 12.833$	B1	
	8.41<12.833, do not reject H ₀		Allow 'accept H ₀ '
	or	E1	Conclusion must be correct
	sufficient evidence to suggest Poisson model is a suitable distribution		
		3	

Q	Answer	Marks	Comments
8(c)	The Poisson model is better and The Poisson model was not rejected [whereas the binomial model was rejected]	B1ft	Valid reason must be given. Allow explanation of lower χ^2 test statistic value for their choice of model
		1	

Question 8 Tot	I 16	
----------------	------	--