

INTERNATIONAL AS FURTHER MATHEMATICS FM02

(9665/FM02) Unit FPSM1 Pure Mathematics, Statistics and Mechanics

Mark scheme

January 2022

Version: 1.1 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaqaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2022 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

Mark is for method
Mark is dependent on one or more M marks and is for method
Mark is dependent on M or m marks and is for accuracy
Mark is independent of M or m marks and is for method and accuracy
Mark is for explanation
Follow through from previous incorrect result
Correct answer only
Correct solution only
Anything which falls within
Anything which rounds to
Any correct form
Answer given
Special case
Or equivalent
2 or 1 (or 0) accuracy marks
Deduct <i>x</i> marks for each error
No method shown
Possibly implied
Substantially correct approach
Significant figure(s)
Decimal place(s)

Q	Answer	Marks	Comments
1(a)	$\mathbf{C}^{T} = \begin{bmatrix} 4 & 3 & 0 \\ -3 & 0 & k \\ 0 & -k & -3 \end{bmatrix}$	B1	
		1	

Q	Answer	Marks	Comments
1(b)(i)	$\mathbf{C}\mathbf{C}^{T} = \begin{bmatrix} 4 & -3 & 0 \\ 3 & 0 & -k \\ 0 & k & -3 \end{bmatrix} \begin{bmatrix} 4 & 3 & 0 \\ -3 & 0 & k \\ 0 & -k & -3 \end{bmatrix}$	M1	Attempt to multiply matrices with at least three elements correct
	$= \begin{bmatrix} 25 & 12 & -3k \\ 12 & 9+k^2 & 3k \\ -3k & 3k & k^2+9 \end{bmatrix}$	A1	
		2	

Q	Answer	Marks	Comments
1(b)(ii)	$k^2 + 9 = 25$	M1	Sets their k^2 +9 equal to 25 PI
	k = 4 and $k = -4$	A1	
		2	

Q	Answer	Marks	Comments
1(c)(i)	The number of columns in the matrix C must be the same as the number of rows in the matrix D	E1	oe
		1	

Q	Answer	Marks	Comments
1(c)(ii)	$\mathbf{DC} = \begin{bmatrix} 1 & 1 & 1 \\ -2 & -2 & -2 \end{bmatrix}$	B1 B1	For a 2 by 3 matrix For a fully correct answer
		2	

Question 1 Tota	8	
-----------------	---	--

Q	Answer	Marks	Comments
2(a)	Lets $f(x) = 2.7^{x} - 2x - 5$ f(2) = -1.71 f(3) = 8.683	М1	Correct evaluation of a suitable
			interval
	Since change of sign between $x = 2$ and $x = 3$ and as the curve is continuous [on this interval] then there is a root in the interval $2 < x < 3$	A1	Must mention change of sign and continuous curve in conclusion
		2	

Q	Answer	Marks	Comments
2(b)	f(2) = -1.71		
2(0)	f(3)=8.683		
	f(2.5)=1.9786		
	2< <i>x</i> <2.5		Attempting to calculate f (mid-point)
	f(2.25) = -0.1552	M1	of at least two sets of values
	2.25 < <i>x</i> < 2.5	A1	Interval stated. PI
	f(2.375) = 0.8300		
	2.25 < <i>x</i> < 2.375		
	f(2.3125)=0.3182		
	2.25 < <i>x</i> < 2.3125	A1	Interval stated. PI
	[a] = 2.3	A1	CSO Must see 2.25 < <i>x</i> < 2.3125 or better
		4	

Q	Answer	Marks	Comments
2(c)	f(-3) = 1.0508 f(-2) = -0.8628	M1	PI by correct answer or by $\beta = -2.4564$
	<i>n</i> = -3	A1	Condone $-3 < \beta < -2$ with no incorrect work
		2	

Question 2 To	8	
---------------	---	--

Q	Answer	Marks	Comments
3(a)(i)	$\begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 3 & 3 \\ 0 & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 5 & 7 & 3 \\ 0 & 1 & 1 & 0 \end{bmatrix}$	M1	Attempts to multiply matrices or multiply $\begin{bmatrix} 1\\0\\0\end{bmatrix}$, $\begin{bmatrix} 1\\1\\1\end{bmatrix}$, $\begin{bmatrix} 3\\1\\0\end{bmatrix}$ or $\begin{bmatrix} 3\\0\\0\end{bmatrix}$ by M
	(1,0), (5,1), (7,1), (3,0)	A1	CAO
		2	

Q	Answer	Marks	Comments
3a(ii)	Shear Parallel to the <i>x</i> -axis	B1 B1	oe for example 'leaving all the points on the <i>x</i> -axis as invariant' Condone 'x-axis is invariant'
		2	

Q	Answer	Marks	Comments
3(b)	$\begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 \\ a \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	M1	Multiplying matrices or using coordinates from the diagram to find <i>a</i> PI by correct answer
	<i>a</i> = 2	A1	
		2	

Q	Answer	Marks	Comments
3(c)	$\mathbf{NM} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 2 & 9 \end{bmatrix}$	M1	Calculating NM using their <i>a</i> PI by correct value for det(NM)
	det(NM) = 9 - 8 = 1	A1	
	Area of the shape remains the same	E1ft	Concluding statement: ft if det(NM) = 1
		3	
3(c) ALT	det N =1 det M =1	M1	Calculation of det N and det M using their <i>a</i> PI by correct value for det(NM)
	det NM=det N × det M=1	A1	
	Area of the shape remains the same	E1	Concluding statement
		3	

Question 3 Total	9	
------------------	---	--

Q	Answer	Marks	Comments
4	$hf(x, y) = 0.1\left(2 - \frac{1.5^3}{2}\right)$	M1	Condone slip on substitution PI
	$y_1 = 1.5 + 0.1 \times 0.3125 = \frac{49}{32} = 1.53125$	A1	AWRT 1.53 PI
	$y_2 = 1.53125 + 0.1 \left(2.1 - \frac{1.53125^3}{2.1} \right)$	M1	Correct use of formula. PI
	y = 1.5703 (to 4 dp)	A1	САО
		4	

Question 4 To	I 4	
---------------	-----	--

Q	Answer	Marks	Comments
5(a)	$P = a \times 10^{kt}$ $\log_{10} P = \log_{10} \left(a \times 10^{kt} \right)$ $= \log_{10} a + \log_{10} \left(10^{kt} \right)$ $= \log_{10} a + kt$	B1	Using the rules for logs correctly AG Full steps must be shown
		1	

Q	Answer	Marks	Comments
5(b)	log ₁₀ <i>P</i> 0.47 0.68 0.89 1.30 1.93	B1	CAO
		1	

Q	Answer	Marks	Comments
5(c)	'Their' points correctly plotted	B1 ft	All points plotted ± 0.25 square
	Line of best fit drawn B1 ft		See image below
	log ₁₀ <i>P</i> ↑		1
	2		
		2	3 <i>t</i>
		2	

Q	Answer	Marks	Comments
5(d)(i)	Their intercept = $\log_{10} a$	M1	Allow answers $-0.4 \le \log_{10} a \le -0.3$
	$log_{10}a = -0.35$ $a = 10^{-0.35} = 0.45$	A1	Allow answers in the range $0.40 \le a \le 0.50$
	Their gradient = k k = 0.83	B1	Allow answers in the range $0.70 \le k \le 0.90$
		3	

Q	Answer	Marks	Comments
5(d)(ii)	$P = 0.45 \times 10^{0.83t}$	B1ft	ft their values of <i>a</i> and <i>k</i>
		1	

Q	Answer	Marks	Comments
5(d)(iii)	$P = 0.45 \times 10^{0.83 \times 4}$ = 940	M1	Substitute $t = 4$ into their formula
	Total profit is 940 million dollars	A1	Must include units Allow answers in the range 250 million < <i>P</i> < 2000 million
		2	

Q	Answer	Marks	Comments
5d(iv)	This total profit is extrapolated [so therefore may be unreliable]	E1	Reference to extrapolation
		1	

11	Question 5 Total
----	------------------

Q	Answer	Marks	Comments
6(a)	Discrete Uniform (Distribution)	B1	Condone uniform distribution
		1	

Q	Answer	Marks	Comments
6(b)	0.75	B1	oe
		1	

Q	Answer	Marks	Comments
6(c)(i)	<i>p</i> = 0.2	B1	oe
		1	

Q	Answer	Marks	Comments
6(c)(ii)	E(X) = 2.5	B1	oe may not be evaluated
	E(2X-5Y) = 2E(X) - 5E(Y)	M1	Applies formula Implied by sight of $2 \times 2.5 - 5 \times 5$ for their 2.5 PI
	=-20	A1	
		3	

Question 6 T	6
--------------	---

Q	Answer	Marks	Comments
7(a)	$P(\text{not win}) = \frac{17}{50}$	B1	oe, seen or used
	P(Basia plays) = $\frac{33}{50} \times \frac{26}{33} + \frac{17}{50} \times \frac{13}{34}$	M1	
	$=\frac{13}{20}$	A1	oe
		3	

Q	Answer	Marks	Comments
7(b)	P(win Basia plays) = $\frac{\frac{33}{50} \times \frac{26}{33}}{\frac{13}{20}}$	M1	ft their P(Basia plays) provided between 0 and 1
	$=\frac{4}{5}$	A1	AG, be convinced
		2	

Q	Answer	Marks	Comments	
7(c)	See image below	B1ft	ft their P(B) provided between 0 and 1 oe	
	$\begin{array}{c} 13\\ 13\\ 20\\ \hline \\ 7\\ 20\\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$			
	1			
	Question 7 Total	6		

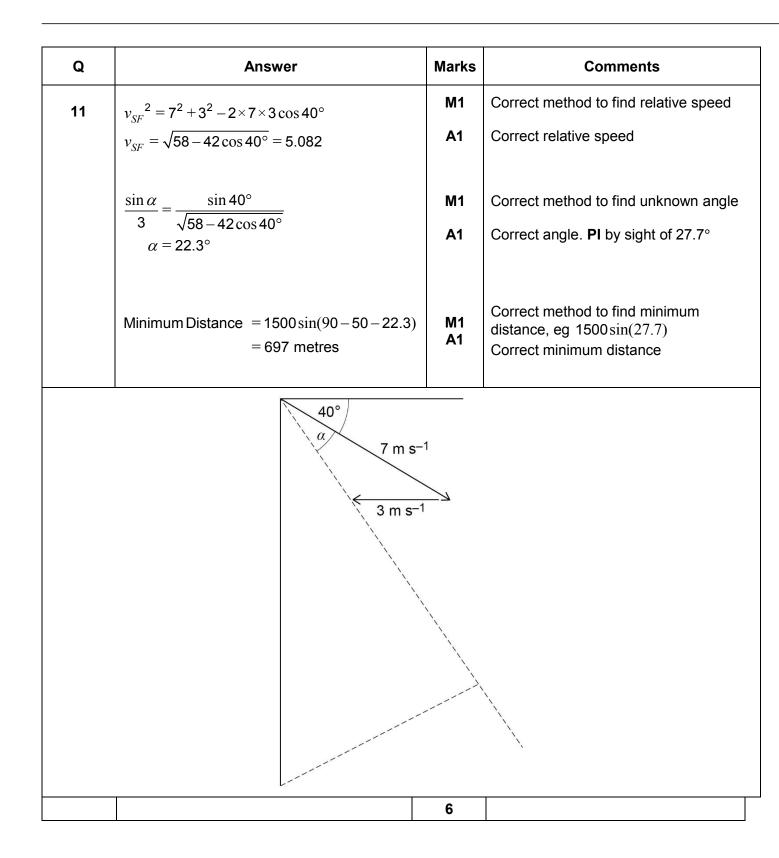
Q	Answer	Marks	Comments
8(a)	$G_X(t) = 0.4 + 0.25t + 0.35t^2$	B1	oe eg $\frac{2}{5} + \frac{1}{4}t + \frac{7}{20}t^2$
		1	

Q	Answer	Marks	Comments
8(b)(i)	$G_{X+Y}(t) = G_X(t)G_Y(t)$	M1	Applies formula
	$0.19t + 0.32875t^2 + 0.2975t^3 + 0.18375t^4$	A1	oe eg $\frac{19}{100}t + \frac{263}{800}t^2 + \frac{119}{400}t^3 + \frac{147}{800}t^4$
		2	

8(b)(ii) G'_{X+Y}(t) = 0.19 + 0.6575t + 0.8925t^2 + 0.735t^3 M1 Differentiates once oe eg $\frac{19}{100} + \frac{263}{400}t + \frac{357}{400}t^2 + \frac{147}{200}t^3$ Condone one slip G''_{X+Y}(t) = 0.6575 + 1.785t + 2.205t^2 M1 Differentiates twice oe eg $\frac{263}{400} + \frac{357}{400}t^2 + \frac{441}{200}t^2$ Condone one slip ft their G'_{X+Y}(t) G'_{X+Y}(1) = 2.475 or G''_{X+Y}(1) = 4.6475 M1 Differentiates twice oe eg $\frac{99}{40}$ or $\frac{1859}{400}$ Fl $\sigma^2 = G''_{X+Y}(1) + G'_{X+Y}(1) - (G'_{X+Y}(1))^2$ M1 Applies variance formula to their G_{X+Y}(t) $\sigma^2 = G''_{X+Y}(1) + G'_{X+Y}(1) - (G'_{X+Y}(1))^2$ M1 Applies variance formula to their G_{X+Y}(t) $= 0.996875$ A1 oe, eg $\frac{319}{320}$ SC a fully correct solution that does not use the result obtained in part (b)(i) scores 3/5	Q	Answer	Marks	Comments
$G''_{X+Y}(t) = 0.6575 + 1.785t + 2.205t^2$ M1 oe eg $\frac{263}{400} + \frac{357}{200}t + \frac{441}{200}t^2$ Condone one slip ft their $G'_{X+Y}(t)$ $G'_{X+Y}(1) = 2.475$ or $G''_{X+Y}(1) = 4.6475$ A1 $G'_{X+Y}(1) = 2.475$ or $G''_{X+Y}(1) = 4.6475$ A1 $\sigma^2 = G''_{X+Y}(1) + G'_{X+Y}(1) - (G'_{X+Y}(1))^2$ M1 $\sigma^2 = G''_{X+Y}(1) + G'_{X+Y}(1) - (G'_{X+Y}(1))^2$ M1 $= 0.996875$ A1 oe, eg $\frac{319}{320}$ SC a fully correct solution that does not use the result obtained in part (b)(i) scores 3/5	8(b)(ii)	$G'_{X+Y}(t) = 0.19 + 0.6575t + 0.8925t^2 + 0.735t^3$	М1	oe eg $\frac{19}{100} + \frac{263}{400}t + \frac{357}{400}t^2 + \frac{147}{200}t^3$
$G'_{X+Y}(1) = 2.475 \text{ or } G''_{X+Y}(1) = 4.6475$ $\sigma^{2} = G''_{X+Y}(1) + G'_{X+Y}(1) - (G'_{X+Y}(1))^{2}$ $\sigma^{2} = G''_{X+Y}(1) + G'_{X+Y}(1) - (G'_{X+Y}(1))^{2}$ $= 0.996875$ $A1$ $Oe eg \frac{99}{40} \text{ or } \frac{1859}{400}$ Pl $Applies variance formula to their G_{X+Y}(t)$ $G_{X+Y}(t)$ $G_{X+Y}(t)$ $Ge, eg \frac{319}{320}$ $SC a fully correct solution that does not use the result obtained in part (b)(i) scores 3/5$		$G''_{X+Y}(t) = 0.6575 + 1.785t + 2.205t^2$	М1	oe eg $\frac{263}{400} + \frac{357}{200}t + \frac{441}{200}t^2$ Condone one slip
$\sigma^{2} = G_{X+Y}''(1) + G_{X+Y}'(1) - (G_{X+Y}'(1))$ $= 0.996875$ $A1$ $oe, eg \frac{319}{320}$ $SC a fully correct solution that does not use the result obtained in part (b)(i) scores 3/5$		$G'_{X+Y}(1) = 2.475 \text{ or } G''_{X+Y}(1) = 4.6475$	A1	e eg $\frac{99}{40}$ or $\frac{1859}{400}$
SC a fully correct solution that does not use the result obtained in part (b)(i) scores 3/5		$\sigma^2 = G''_{X+Y}(1) + G'_{X+Y}(1) - (G'_{X+Y}(1))^2$	M1	
not use the result obtained in part (b)(i) scores 3/5		= 0.996875	A1	oe , eg 319 320
5				not use the result obtained in part
			5	

Question 8 Total 8

Q	Answer	Marks	Comments
9	[s] = L		
	$\begin{bmatrix} vt \end{bmatrix} = LT^{-1} \times T = L$ $\begin{bmatrix} \frac{1}{2}at^2 \end{bmatrix} = LT^{-2} \times T^2 = L$	B1	For correct dimensions of at least two terms (condone use of units)
	$\left[\frac{1}{2}at^2\right] = LT^{-2} \times T^2 = L$	B1	All three dimensions correct
	Dimensionally consistent	B1	Obtains same dimensions and states conclusion
		3	


	Question 9 Total	3	
--	------------------	---	--

Q	Answer	Marks	Comments
10(a)	$7 \times 4 + 3 \times (-5) = 7v_A + 3v_B$ $13 = 7v_A + 3v_B$	M1	Conservation of momentum equation Condone sign errors
	$v_A - v_B = -0.9(4 - (-5))$ $v_A - v_B = -8.1$	M1	Coefficient of restitution equation Condone sign errors
	$v_{A} - v_{B} = -8.1$	A1	Both equations correct
	$v_A = -1.13$ Speed of $A = 1.13 \text{ m s}^{-1}$ $v_B = 6.97$	A1	Correct speed for A
	Speed of $B = 6.97 \mathrm{m s^{-1}}$	A1	Correct speed for <i>B</i>
		5	

Q	Answer	Marks	Comments
10(b)	Sphere <i>A</i> changes direction Sphere <i>B</i> changes direction	B1	Both statements correct
		1	

Q	Answer	Marks	Comments
10(c)	$\int_0^{0.02} kt (0.02 - t) dt$	M1	Forms integral
	$=\frac{k}{750000}$	A1	Evaluates integral correctly
	$I = 7 \times (-1.13) - 7 \times 4$ or $I = 3 \times 6.97 - 3 \times (-5)$	M1	Uses impulse equation Condone sign errors
	= -35.91 or 35.91	A1	Correct impulse
	$k = 750000 \times 35.91$ = 26900000	A1	CAO
		5	

Question 10 Tot	al 11	
-----------------	-------	--

Q	Answer	Marks	Comments
11 ALT 1	$\boldsymbol{v}_{SF} = \begin{bmatrix} 7\cos 40^{\circ} \\ 7\sin 40^{\circ} \end{bmatrix} - \begin{bmatrix} 3 \\ 0 \end{bmatrix}$	M1	Correct method to find relative velocity
	$\boldsymbol{v}_{\boldsymbol{SF}} = \begin{bmatrix} 7\cos 40^\circ - 3\\ 7\sin 40^\circ \end{bmatrix}$	A1	Correct relative velocity
	$\tan\theta = \frac{7\sin 40^{\circ}}{7\cos 40^{\circ} - 3}$	M1	Correct method to find unknown angle
	$7\cos 40^\circ - 3$ $\theta = 62.3^\circ$	A1	Correct angle. PI by sight of 27.7°
	Minimum Distance = $1500 \sin(90 - 62.3)$ = 697 metres	M1 A1	Correct method to find minimum distance Correct minimum distance
11 ALT 2	$\boldsymbol{r_{SF}} = \begin{bmatrix} 7t\cos 40^{\circ} \\ 1500 - 7t\sin 40^{\circ} \end{bmatrix} - \begin{bmatrix} 3t \\ 0 \end{bmatrix}$	M1	Correct method to find relative position vector
	$\mathbf{r}_{SF} = \begin{bmatrix} t(7\cos 40^\circ - 3) \\ 1500 - 7t\sin 40^\circ \end{bmatrix}$	A1	Correct relative position vector
	$t^{2}(7\cos 40^{\circ}-3)^{2} + (1500 - 7t\sin 40^{\circ})^{2}$ = $t^{2}((7\cos 40^{\circ}-3)^{2} + 49\sin^{2} 40^{\circ}) - 21000t\sin 40^{\circ} + 1500^{2}$	M1	Correct method to find unknown time
	$t_{\min} = \frac{21000\sin 40^{\circ}}{2\left((7\cos 40^{\circ} - 3)^2 + 49\sin^2 40^{\circ}\right)} = 261.3$	A1	Correct time. AWRT 261
	Minimum Distance		
	$= \sqrt{261.3^{2}(7\cos 40^{\circ} - 3)^{2} + (1500 - 7 \times 261.3\sin 40^{\circ})^{2}}$ = 697 metres	M1 A1	Correct method to find minimum distance Correct minimum distance

Question 11 Total	6	
-------------------	---	--