

Please write clearly in block capitals.				
Centre number	Candidate number			
Surname				
Forename(s)				
Candidate signature	I declare this is my own work.			
	/			

INTERNATIONAL A-LEVEL MATHEMATICS

(9660/MA03) Unit P2 Pure Mathematics

Thursday 14 January 2021 07:00 GMT Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
TOTAL		

	Answer all questions in the spaces provided.	Do not write outside the box
1	The functions f and g are defined with their respective domains by	_
	f(x) = x - 5 for all real values of x	
	$g(x) = \frac{25}{x+4}$ for all real values of $x, x \neq -4$	
	The composite function $\ \mathrm{fg}\ $ is denoted by h	
1 (a)	Find $h(x)$ giving your answer as a single fraction. [2 marks	3
		-
		-
		-
		-
	Answer	-

1	(b)	The inverse of h is h^{-1}	Do not write outside the box
1	(b) (i)	Find $h^{-1}(x)$	
		[3 marks]	
		Answer	
1	(b) (ii)	Find the range of h^{-1}	
•	(2) (1)	[1 mark]	
		Answer	6

2
 The line
$$l_1$$
 has equation $\mathbf{r} = \begin{bmatrix} 4\\-2\\-3 \end{bmatrix} + 2\begin{bmatrix} -1\\5\\2 \end{bmatrix}$
 The line l_2 has equation $\mathbf{r} = \begin{bmatrix} -1\\5\\11 \end{bmatrix} + \mu \begin{bmatrix} -4\\-4\\c \end{bmatrix}$

 2
 (a) In the case where l_1 and l_2 intersect, find
 [3 marks]

 2
 (a) (i) the value of c
 [3 marks]

 Answer

 2 (a) (ii) the coordinates of the point of intersection.

 [1 mark]

 Answer

 2 (b) In the case where l_1 and l_2 are perpendicular, find the value of c

 [3 marks]

 [3 marks]

 [1 mark]

 Answer

 2 (b)

 In the case where l_1 and l_2 are perpendicular, find the value of c

 [3 marks]

 [3 marks]

 [3 marks]

 [3 marks]

 Answer

 [3 marks]

 [3 marks]

 [3 marks]

 [3 marks]

 [3 marks]

3 It is given that $y = 3\sin\theta - 3\cos\theta$ Express y in the form $R\sin(\theta - \alpha)$ where R is a surd and $0^{\circ} < \alpha < 90^{\circ}$ 3 (a) [2 marks] Answer 3 (b) Hence find **3** (b) (i) the greatest value of y^2 [1 mark] Answer **3** (b) (ii) the least value of y^2 [1 mark] Answer 3 (b) (iii) the values of θ in the interval $-90^{\circ} < \theta < 90^{\circ}$ for which $y = -\frac{3\sqrt{6}}{2}$ [3 marks] Answer

7

Do not write outside the

box

4	(a)	Describe a sequence of two geometrical transformations that maps the graph $y = \cos x$ onto the graph of $y = 1 + 2\cos x$	of
			[4 marks]
4	(b)	Sketch the graph of the curve with equation	
		$y = 1 + 2\cos x \text{for} -\pi < x < \pi$	
		indicating the value of y where the curve crosses the y -axis.	
		v ↑	[2 marks]
		$-\pi$ O π x	

4 (c)	The region bounded by the curve $y = 1 + 2\cos x$ and the <i>x</i> -axis from $-\frac{2}{3}\pi$ to $\frac{2}{3}\pi$ is rotated through 2π radians about the <i>x</i> -axis to form a solid. Find the exact value of the volume of the solid generated, giving your answer in the form $\pi(k\pi + p\sqrt{q})$ where <i>k</i> , <i>p</i> and <i>q</i> are constants.	bo not write outside the box
	$\left[\text{you are given } \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \right]$ [6 marks]	
	Answer	12
	Answer	12

5	(a)	Find the binomial expansion of $(1+x^2)^{\frac{1}{2}}$ up to and including the term in x^4	Do not write outside the box
	(-7	[2 marks]	
		Answer	
F	(6)	Divintegrating each term in vour encourte part (a) find on encryption to value of	
5	(b)	By integrating each term in your answer to part (a) , find an approximate value of	
		$\int_0^{0.5} \sqrt{\left(1+x^2\right)} \mathrm{d}x$	
		giving your answer to five decimal places.	
		[4 marks]	
		Answer	

(c)	Use Simpson's rule with four strips to find an estimate for	
	$\int_0^{0.5} \sqrt{\left(1+x^2\right)} \mathrm{d}x$	
	giving your answer to five decimal places.	[4 marks]
		_

Turn over ►

6		It is given that $\alpha + \beta = 45^{\circ}$ where α and β are both positive.	
6	(a)	Find $\tan\beta$ in terms of $\tan\alpha$	[2 marks]
		Answer	
6	(b)	Show that $(1 + \tan \alpha)(1 + \tan \beta) = 2$	[2 marks]

6	(c)	Find the exact value of tan 22.5 [°] [3 marks]	Do not write outside the box
		Answer	7
		Turn over for the next question	
		Turn over ►	

7 (a)	A curve has equation $y = \sin(\ln(2x))$, $0 < x < 2\pi$	Do not v outside box
	The curve intersects the line $y = 3 - 4x$ at a single point where $x = \alpha$	
7 (a) (i)	Show that α lies between 0.6 and 0.7 [2 marks]	
7 (a) (ii)	The equation $\sin(\ln(2x)) = 3 - 4x$ can be rearranged to generate the iterative formula	
	$x_{n+1} = \frac{3 - \sin\left(\ln\left(2x_n\right)\right)}{4}$	
	Use $x_1 = 0.6$ to find the values of x_2 and x_3	
	Give your answers to three decimal places. [2 marks]	
	$x_2 = $ $x_3 = $	
7 (b)	A curve has equation $y = \cos(\ln(3x))$, $0 < x < 2\pi$	
	Find the coordinates of a stationary point of the curve. [3 marks]	
	Answer	

			Do not wri
7	(c)	It is given that $y = A\sin(\ln(2x)) + B\cos(\ln(3x))$, $0 < x < 2\pi$ where A and B are constants.	outside th box
		Show that $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0$	
		$dx^2 = dx$ [4 marks]	
			11

8 (a) Given that
$$\cot x = \frac{\cos x}{\sin x}$$
, use the quotient rule to show that

$$\frac{d}{dx}(\cot x) = -\cos e^{2}x$$
[2 marks]

8	(b)	The curve <i>C</i> has the equation $x = \frac{3}{4} \cot\left(2y - \frac{\pi}{2}\right)$	Do not writ outside the box
8	(b) (i)	Find $\frac{dx}{dy}$ giving your answer in terms of y	
		[2 marks]	
		Answer	
8	(b) (ii)	Find the gradient of the normal to C at the point $\left(\frac{3}{4}, \frac{3\pi}{8}\right)$	
		[3 marks]	
		Answer	
		Turn over ►	7

9	(b) (ii)	Determine the nature of this stationary point. [4 marks]	Do not write outside the box
		Answer	9

10	The difference between the temperature of an object and the temperature of the	Do not outside boz
	surrounding air is $x ^\circ C$ at t minutes.	
	The rate at which this difference in temperature decreases is proportional to x	
	The surrounding air temperature is a constant 20 °C	
	When $t = 0$ the temperature of the object is 90 °C	
	When $t = 5$ the temperature of the object is 70 °C	
0 (a)	Explain briefly why this information can be represented by the differential equation	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -kx \qquad \qquad k > 0$	
	[1 mark]	
0 (h)	Find the temperature of the chiest when $t = 15$, giving your ensure to one desired place	
l0 (b)	Find the temperature of the object when $t = 15$ giving your answer to one decimal place [6 marks]	

	Answer
10 (c)	Find the value of t when the temperature of the object is 40 °C giving your answer to
	one decimal place. [2 marks]
	one decimal place. [2 marks] [2 mark
	in the decimal place. [2 marks]
	[2 marks]
	[2 marks]
	[2 marks]

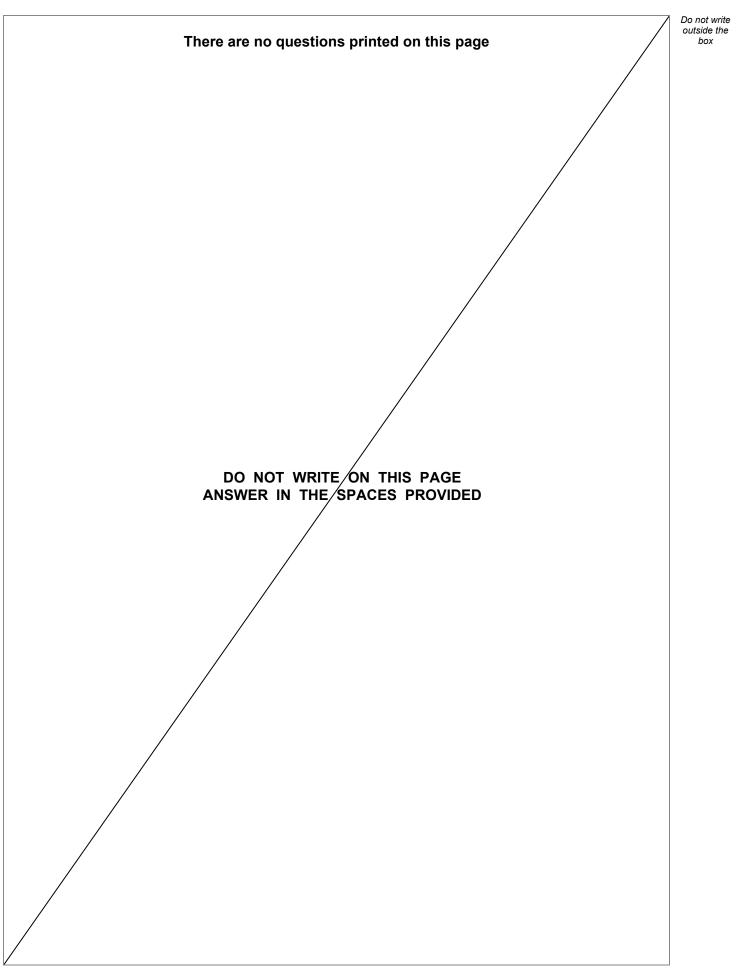
Turn over ►

11 (a)	Find the exact value of $\int_0^6 x e^{-0.5x} dx$ [5 marks]	Do not write outside the box
11 (b)	Answer Use the substitution $u^2 = x+1$ to find $\int_{8}^{15} \frac{\sqrt{x+1}}{x-3} dx$	-
	giving your answer in the form $a \ln b$ where a and b are constants. [9 marks]	

	Do not write outside the box
	_
	-
	_
	-
	_
	-
	-
	_
	-
	-
	_
	-
	_
	-
	-
	_
	-
	_
	-
	-
	_
	-
	-
	-
	_]
Answer	14
	-

12 (c) Use your answers to parts (a) and (b) to show that $\frac{4x^2+5}{(1-x)(2-x)(5-2x)} = D + Ex + Fx^2$ for small values of x, stating the rational values of D, E and F[4 marks]

10


Do not write outside the box

13	A curve is defined by the parametric equations	Do not write outside the box
	$x = ct$, $y = \frac{c}{t}$ where $t > 0$ and c is a constant.	
	The tangent at the point $P\left(cp, \frac{c}{p}\right)$ on the curve meets the <i>x</i> -axis at <i>A</i> and	
	the <i>y</i> -axis at <i>B</i>	
	The normal at the point <i>P</i> meets the line $y = x$ at <i>C</i> and the line $y = -x$ at <i>D</i>	
13 (a)	Find a Cartesian equation of the curve. [1 mark]	
	Answer	
13 (b)	Show that <i>P</i> is the mid-point of <i>AB</i> and the mid-point of <i>CD</i> [7 marks]	

13 (c)	Prove that <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> are the vertices of a square.
	[3 marks]
	END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2021 Oxford International AQA Examinations and its licensors. All rights reserved.

