

Please write clearly in block capitals.			
Centre number Candidate number			
Surname			
Forename(s)			
Candidate signature I declare this is my own work.			

INTERNATIONAL AS **MATHEMATICS**

(9660/MA01) Unit P1 Pure Mathematics

Monday 4 January 2021 07:00 GMT Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

IB/G/Jan21/MA01

2	(a)	Find the sum of the first 90 natural numbers. [2 marks]
		Answer
2	(b)	Peter saves money each week over a period of 65 weeks.
		He starts saving in Week 1
		In Week 12 he saves 25 dollars.
		In Week 28 he saves 57 dollars.
		Peter's weekly savings, in dollars, form an arithmetic sequence with first term a and common difference d
2	(b) (i)	Find the value of <i>a</i> and the value of <i>d</i> [3 marks]
		a = d =

2	(b) (ii)	Find the total amount he saves over the complete 65-week period. [2 marks]	Do not write outside the box
		Answer	
		Turn over for the next question	
		Turn over ▶	

3	(b)	D is the point on l that is nearest to C		
		Find the coordinates of D	[5 marks]	
		Answer		
3	(c)	Using the fact that the line segment <i>AB</i> has length $3\sqrt{53}$ find the area of triangle <i>ABC</i>		
			[3 marks]	
		Answer		

10

				Do not write outside the
4	(a)	Describe fully the single transformation which maps the graph of 2×2		box
		$y = x^2 + 2$ onto the graph of		
		$y = x^2 - 9x + 5$		
			[4 marks]	
4	(b)	It is given that		
	()	$f(x) = 4x^3 + 5x^2 + 32k^3 - 20k^2$		
		where k is a constant.		
4	(b) (I)	Find the remainder when $f(x)$ is divided by $(x-3k)$		
		Give your answer in the form $ak^3 + bk^2$ where <i>a</i> and <i>b</i> are integers.	[] merkel	
			[2 marks]	
		Answer		

4	(b) (ii)	Use the Factor Theorem to show that $(x+2k)$ is a factor of $f(x)$ [2 marks]
4	(c)	The graph of $y = f(x)$ is mapped onto the graph of $y = g(x)$ by a stretch with
		scale factor 3 in the <i>x</i> -direction.
4	(c) (i)	State in terms of k a root of the equation $g(x) = 0$ [1 mark]
		Answer
4	(c) (ii)	Find an expression for $g(x)$ fully simplifying the coefficients. [2 marks]
		g(x) =
		Turn over ►

11

F (a)		
5 (C)	Find the value of a and the value of b	[1 mark]
	a –	<i>b</i> –
	<i>u</i> –	<i>U</i> –
5 (d)	Using your values of a and b , find the values of	d for which the line $v = x + d$
	does not intersect or touch the curve C	
		[4 marks]
	Anour	
	Answer	
	Answer	

Turn over ►

11

6	(b) (i)	Hence show that the first two non-zero terms, in ascending powers of x , of	Do not write outside the box
		$\left(2+\frac{1}{4}x\right)^8 - \left(2-\frac{1}{4}x\right)^8$	
		are $512x + 56x^3$ [3 marks]	
6	(b) (ii)	Using the result in part (b)(i) find an approximation to the value of $2.1^8 - 1.9^8$ Give your answer to two decimal places	
		[2 marks]	
		Answer	9
		Turn over ▶	_ ►

7	(b) (i)	Find the maximum value of <i>V</i> [4 marks]	Do not write outside the box
		Answer	
7	(b) (ii)	Prove, using $\frac{d^2V}{dx^2}$, that your value of <i>V</i> is a maximum. [2 marks]	
			10

8 Given that k is a constant such that k > 4 show that

$$\int_{64}^{16k} \left(\sqrt{x} + \frac{1}{6\sqrt{x}}\right) \mathrm{d}x$$

can be written in the form

$$\sqrt{k}(ak+b)-c$$

where a, b and c are constants to be found.

[8 marks]

Do not write outside the box 8 Turn over for the next question Turn over ►

Do not write outside the A geometric series has first term a common ratio r and nth term u_n 9 It is given that $u_4 = -6$ and $u_3 + u_5 = 20$ Show that $3r^2 + 10r + 3 = 0$ 9 (a) [3 marks]

box

[5 marks]

9	(b)	The sum to infinity of the series can be calculated.
		Show that if k is a positive integer then for all values of k
		$\sum_{n=k}^{\infty} u_n = \frac{(-1)^{k-1} p^{m-k}}{2}$
		where p and m are constants to be found.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2021 Oxford International AQA Examinations and its licensors. All rights reserved.

IB/G/Jan21/MA01