

Please write clearly in	block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	
	I declare this is my own work.

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS

(9665/FM03) Unit FP2 Pure Mathematics

Tuesday 12 January 2021 07:00 GMT Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
TOTAL	

		Answer all questions in the spaces provided.
1		A plane transformation is represented by the matrix
		$\mathbf{M} = \begin{bmatrix} 25 & 8 \\ t & 3 \end{bmatrix}$
		where t is a constant.
		The eigenvalues of M are 27 and 1
1	(a)	Find the value of t [2 marks]
		<i>t</i> =
1	(b)	An eigenvector corresponding to the eigenvalue 27 is $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$
		An eigenvector corresponding to the eigenvalue 1 is $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$
1	(b) (i)	State the equations of the invariant lines of the transformation. [1 mark]
		Answerand
1	(b) (ii)	State, with a brief reason, which one of the invariant lines found in part (b)(i) is also a line of invariant points. [2 marks]

Do not write outside the box

2	Evaluate the improper integral	Do not write outside the box
	$\int_{-1}^{\infty} (1+x) \mathrm{e}^{-2x} \mathrm{d}x$	
	showing the limiting process used. [6 marks]	
		6
	Answer	

3 (a) By direct expansion, or otherwise, show that $\begin{vmatrix} 3 & -1 & 1 \\ 5 & k & 3 \\ k+2 & 1 & 2 \end{vmatrix} = k - k^2$ [2 marks] 3 (b) A set of three planes is given by the system of equations 3x - y + z = 11 $5x + ky + 3z = k + 9$ $(k+2)x + y + 2z = -2$ where k is a real constant. 3 (b) (i) Determine the number of solutions of the given system of equations when $k = 1$ [3 marks] $\begin{vmatrix} 3 \\ marks \end{vmatrix}$ Answer			
$\begin{vmatrix} 3 & -1 & 1 \\ 5 & k & 3 \\ k+2 & 1 & 2 \end{vmatrix} = k-k^{2}$ [2 marks] 3 (b) A set of three planes is given by the system of equations $3x - y + z = 11$ $5x + ky + 3z = k + 9$ $(k+2)x + y + 2z = -2$ where k is a real constant. 3 (b) (l) Determine the number of solutions of the given system of equations when $k = 1$ [3 marks]	3	(a)	By direct expansion, or otherwise, show that
$\begin{vmatrix} 5 & k & 3 \\ k+2 & 1 & 2 \end{vmatrix} = k-k^2$ [2 marks] 3 (b) A set of three planes is given by the system of equations 3x - y + z = 11 $5x + ky + 3z = k+9$ $(k+2)x + y + 2z = -2$ where k is a real constant. 3 (b) (i) Determine the number of solutions of the given system of equations when $k = 1$ [3 marks] 			3 –1 1
$\begin{vmatrix} k+2 & 1 & 2 \end{vmatrix}$ [2 marks] [3 (b) A set of three planes is given by the system of equations $3x - y + z - 11$ $5x + ky + 3z = k + 9$ $(k + 2)x + y + 2z = -2$ where k is a real constant. 3 (b) (i) Determine the number of solutions of the given system of equations when $k = 1$ [3 marks]			$5 k 3 = k - k^2$
$[2 \text{ marks}]$ $[2 \text{ marks}]$ $[3 (b) A set of three planes is given by the system of equations 3x - y + z = 11 5x + ky + 3z = k + 9 (k + 2)x + y + 2z = -2 where k is a real constant. [3 \text{ (b) (i) Determine the number of solutions of the given system of equations when k = 1 [3 \text{ marks}] [3 \text{ marks}] [3 \text{ marks}] [3 \text{ (b) (ii) Hence give a geometrical interpretation of the significance of the result in part (b)(i) in relation to the three planes when k = 1 [1 \text{ mark}]$			$\begin{vmatrix} k+2 & 1 & 2 \end{vmatrix}$
3 (b) A set of three planes is given by the system of equations 3x - y + z = 11 $5x + ky + 3z = k + 9$ $(k + 2)x + y + 2z = -2$ where k is a real constant. 3 (b) (i) Determine the number of solutions of the given system of equations when $k = 1$ [3 marks] [3 marks] [3 marks] [3 marks] [4 mark] [4 mark]			[2 marks]
3 (b) A set of three planes is given by the system of equations 3x - y + z = 11 $5x + ky + 3z = k + 9$ $(k + 2)x + y + 2z = -2$ where k is a real constant. 3 (b) (i) Determine the number of solutions of the given system of equations when $k = 1$ [3 marks] [3 marks] Answer 3 (b) (ii) Hence give a geometrical interpretation of the significance of the result in part (b)(i) in relation to the three planes when $k = 1$ [1 mark]			
3 (b) A set of three planes is given by the system of equations 3x - y + z = 11 $5x + ky + 3z = k + 9$ $(k + 2)x + y + 2z = -2$ where k is a real constant. 3 (b) (i) Determine the number of solutions of the given system of equations when $k = 1$ [3 marks] [3 marks] Answer Answer 3 (b) (ii) Hence give a geometrical interpretation of the significance of the result in part (b)(i) in relation to the three planes when $k = 1$ [1 mark]			
3 (b) A set of three planes is given by the system of equations 3x - y + z = 11 $5x + ky + 3z = k + 9$ $(k + 2)x + y + 2z = -2$ where k is a real constant. 3 (b) (i) Determine the number of solutions of the given system of equations when $k = 1$ [3 marks] [3 marks] Answer 3 (b) (ii) Hence give a geometrical interpretation of the significance of the result in part (b)(i) in relation to the three planes when $k = 1$ [1 mark]			
3 (b) A set of three planes is given by the system of equations 3x - y + z = 11 $5x + ky + 3z = k + 9$ $(k + 2)x + y + 2z = -2$ where k is a real constant. 3 (b) (i) Determine the number of solutions of the given system of equations when $k = 1$ [3 marks] [3 marks] [3 marks] [3 marks] [4 marks] 3 (b) (ii) Hence give a geometrical interpretation of the significance of the result in part (b)(i) in relation to the three planes when $k = 1$ [1 marks]			
 3 (b) A set of three planes is given by the system of equations 3x - y + z = 11 5x + ky + 3z = k+9 (k+2)x + y + 2z = -2 where k is a real constant. 3 (b) (i) Determine the number of solutions of the given system of equations when k = 1 [3 marks] [3 marks] Answer 3 (b) (ii) Hence give a geometrical interpretation of the significance of the result in part (b)(i) in relation to the three planes when k = 1 [1 marks] [1 marks] [
3 (b) A set of three planes is given by the system of equations 3x - y + z = 11 $5x + ky + 3z = k+9$ $(k+2)x + y + 2z = -2$ where k is a real constant. 3 (b) (i) Determine the number of solutions of the given system of equations when $k = 1$ [3 marks] [3 marks] [3 marks] [3 marks] [3 marks] [4 mark] [1 mark]	_		
3x - y + z = 11 $5x + ky + 3z = k + 9$ $(k+2)x + y + 2z = -2$ where k is a real constant. 3 (b) (i) Determine the number of solutions of the given system of equations when $k = 1$ [3 marks] 	3	(b)	A set of three planes is given by the system of equations
5x + ky + 3z = k+9 $(k+2)x + y + 2z = -2$ where k is a real constant. 3 (b) (i) Determine the number of solutions of the given system of equations when $k = 1$ [3 marks] 			3x - y + z = 11
(k+2)x + y + 2z = -2 where k is a real constant. 3 (b) (i) Determine the number of solutions of the given system of equations when $k = 1$ [3 marks] [3 marks] [3 marks] [3 marks] [3 marks] [4 mark] [1 mark]			5x + ky + 3z = k + 9
where k is a real constant. 3 (b) (i) Determine the number of solutions of the given system of equations when k = 1 [3 marks] [3 marks] [3 marks] [3 marks] [3 marks] [3 marks] [1 mark] [1 mark] [1 mark]			(k+2)x + y + 2z = -2
 3 (b) (i) Determine the number of solutions of the given system of equations when k = 1 [3 marks] [3 marks] [4 mark] 			where k is a real constant.
3 (b) (i) Determine the number of solutions of the given system of equations when $k = 1$ [3 marks] [3 marks] [3 marks] [3 marks] [1 mark] [3 (b) (ii) Hence give a geometrical interpretation of the significance of the result in part (b)(i) in relation to the three planes when $k = 1$ [1 mark]	2	(►) (:)	Determine the number of colutions of the since exchange of equations where 1 a
Answer3 (b) (ii) Hence give a geometrical interpretation of the significance of the result in part (b)(i) in relation to the three planes when $k = 1$ [1 mark]	3	(I) (d)	Determine the number of solutions of the given system of equations when $k = 1$ [3 marks]
Answer			
Answer			
Answer3 (b) (ii) Hence give a geometrical interpretation of the significance of the result in part (b)(i) in relation to the three planes when $k = 1$ [1 mark]			
Answer3 (b) (ii) Hence give a geometrical interpretation of the significance of the result in part (b)(i) in relation to the three planes when <i>k</i> = 1 [1 mark]			
Answer3 (b) (ii) Hence give a geometrical interpretation of the significance of the result in part (b)(i) in relation to the three planes when $k = 1$ [1 mark]			
Answer3 (b) (ii) Hence give a geometrical interpretation of the significance of the result in part (b)(i) in relation to the three planes when $k = 1$ [1 mark]			
Answer3 (b) (ii) Hence give a geometrical interpretation of the significance of the result in part (b)(i) in relation to the three planes when $k = 1$ [1 mark]			
Answer3 (b) (ii) Hence give a geometrical interpretation of the significance of the result in part (b)(i) in relation to the three planes when $k = 1$ [1 mark]			
Answer3 (b) (ii) Hence give a geometrical interpretation of the significance of the result in part (b)(i) in relation to the three planes when $k = 1$ [1 mark]			
Answer 3 (b) (ii) Hence give a geometrical interpretation of the significance of the result in part (b)(i) in relation to the three planes when $k = 1$ [1 mark]			
 Answer 3 (b) (ii) Hence give a geometrical interpretation of the significance of the result in part (b)(i) in relation to the three planes when k = 1 [1 mark] 			
 3 (b) (ii) Hence give a geometrical interpretation of the significance of the result in part (b)(i) in relation to the three planes when k = 1 [1 mark] 			Answer
relation to the three planes when $k = 1$ [1 mark]	3	(b) (ii)	Hence give a geometrical interpretation of the significance of the result in part (b)(i) in
[1 mark]	•	(~) (…)	relation to the three planes when $k = 1$
			[1 mark]

Do not write outside the box

4	Find the general solution of the differential equation	Do not write outside the box
	$\frac{\mathrm{d}y}{\mathrm{d}x} + (\tanh x)y = \cosh^2 x + 2\mathrm{e}^x$	
	[7 marks]	
	Answer	7

5	The cubic equation
	$4z^3 + cz^2 + dz - 12 = 0$
	where c and d are real numbers, has complex roots $lpha$ and eta and a real root γ
	It is given that $\alpha = 3 - \sqrt{3}i$
5 (a) (i)	Write down the value of β [1 mark]
	$\beta =$
5 (a) (ii)	Find the value of γ [2 marks]
	γ =
o (a) (iii)	[3 marks]
	$c = _$ $d = _$

5	(b) (i)	Express $3 - \sqrt{3}i$ in the form $r e^{i\theta}$ where $r > 0$ and $-\pi < \theta \le \pi$		Do not writ outside the box
			[2 marks]	
		Answer		
5	(b) (ii)	Given that <i>n</i> is a positive integer, express $\alpha^n + \beta^n$ as a single trigonometric term	erm. [4 marks]	
		Answer		
_				
5	(b) (iii)	Hence find the complete set of positive integer values of <i>n</i> for which $a^n + \beta^n = 0$		
			[2 marks]	
		Δnewer		<u> </u>
		Allower		
		I	urn over ►	

Do not write outside the box

Do not write outside the box

6	(b)	Using the results in part (a) show that
---	-----	---

$$\sum_{r=1}^{n} \frac{r}{(r+1)(r+2)(r+3)} = \frac{n(n+a)}{b(n+c)(n+d)}$$

where a, b, c and d are integers.

[3 marks]

11

7		It is given that y satisfies the differential equation	Do not write outside the box
		$\frac{d^2 y}{dx^2} + 6\frac{dy}{dx} + 9y = 9e^{-3x} + 18$	
7	(a)	Find the values of the constants a and b for which	
		$ax^2e^{-3x}+b$	
		is a particular integral of this differential equation. [5 marks]	
		<i>a</i> = <i>b</i> =	

7 (b)	Hence solve the differential equation, expressing y in terms of x		outside the box
	given that $y = 3$ and $\frac{dy}{dx} = 0$ when $x = 0$		
	di di	[6 marks]	
	<i>y</i> =		11

0	(2)	The per singular matrix	Do not write outside the
0	(a)	$\begin{bmatrix} 2 & k+1 & -2 \end{bmatrix}$	box
		$\mathbf{M} = \begin{vmatrix} k & 4 & -2 \end{vmatrix}$	
		where k is an integer.	
		Find \mathbf{M}^{-1} in terms of k	
		[6 marks]	
		Answer	

8	(b)	The 3×3 matrix A represents a rotation through an angle of 90° about the <i>z</i> -axis.	Do not write outside the box
		Write down the matrix \mathbf{A}^{-1}	
		[2 marks]	
		Answer	8
		Turn over for the next question	
		Turn over ►	

9	(a)	Given that	Do not write outside the box
•	(~)	$\tan y = \frac{1+x}{2}$ and $x \neq 1$	
		show that $1-x$	
		$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{1}{\mathrm{d}t + \frac{2}{\mathrm{d}t}}$	
		dx 1+x [3 m	narks]

9 (b)

transformation by which the graph of

Hence, by expressing $\tan^{-1}\left(\frac{1+x}{1-x}\right)$ in terms of $\tan^{-1}x$ describe the single geometrical

Do not write outside the box

10	A curve has Cartesian equation	Do not wr outside th
	$y = 1 + 0.5 \sinh^2 2x$	
	The arc of the curve from $x = 0$ to $x = 0.5$ is rotated through 2π radians about the <i>x</i> -axis.	
10 (a)	Show that S , the area of the curved surface generated, is given by	
	$S = \frac{\pi}{2} \int_0^{0.5} (3 + \cosh 4x) \cosh 4x dx$ [6 marks]	1
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-

10 (b)	Hence find the exact value of S leaving your answer in terms of hyperbolic functions. [3 marks]	Do not write outside the box
		9
	Answer	
	Turn over for the next question	

Turn over 🕨

_

11 (b) (i	i) The point D is the image of A after reflection in the plane Π		Do not write outside the box
	Find the coordinates of D	[5 marks]	
	Answer		10

12
 The diagram shows a sketch of a curve
$$C_i$$
, the pole O and the initial line.
 December of the second se

12	(b)	A circle C_2 has Cartesian equation $x^2 + y^2 = 8$	Do not writ outside the box
12	(b) (i)	By forming and solving a cubic equation, prove that C_1 and C_2 only intersect at to points, A and B , and find the Cartesian coordinates of A and B [5 r	vo narks]
		Answer	
12	(b) (ii)	Find the area of the region bounded by the arc <i>ADB</i> of C_1 and the minor arc <i>AB</i> the circle C_2 giving your answer in an exact form. [3 r	of narks]
		Answer	13

	$r + ar^3 + hr^5$
	$x + ax^2 + bx^2$
Sh	ow that $a = -\frac{1}{6}$ and find the value of b
	[4 marks]
_	
	<i>b</i> =
	<i>v</i> –
	Question 12 continues on the next next

13 (d)	Hence show that		Do not write outside the box
	$\lim_{x \to 0} \left[\frac{x^2 - x \sinh^{-1} x}{\left(1 - \cos 3x\right)^2} \right]$		
	exists and find its value.	[4 marks]	
	Answer		13
	END OF QUESTIONS		

	Do not write outside the box
n.	

Question number	Additional page, if required. Write the question numbers in the left-hand margin

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

	••••••
Copyright information	4 . T his has shired
For connoenuality purposes, all acknowledgements of third-party copyright material are published in a separate bookle is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.	I. I HIS DOOKIET
Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holder been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledger have any queries please contact the Copyright Team.	s may have nents. If you
Copyright © 2021 Oxford International AQA Examinations and its licensors. All rights reserved.	

