

INTERNATIONAL AS MATHEMATICS MA02

(9660/MA02) Unit PSM1 Pure Mathematics, Statistics and Mechanics

Mark scheme

January 2021

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordagaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2021 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

M Mark is for method

m Mark is dependent on one or more M marks and is for method

A Mark is dependent on M or m marks and is for accuracy

B Mark is independent of M or m marks and is for method and accuracy

E Mark is for explanation

√ or ft Follow through from previous incorrect result

CAO Correct answer only

CSO Correct solution only

AWFW Anything which falls within

AWRT Anything which rounds to

ACF Any correct form

AG Answer given

SC Special case

oe Or equivalent

A2, 1 2 or 1 (or 0) accuracy marks

–x EE Deduct x marks for each error

NMS No method shown

PI Possibly implied

SCA Substantially correct approach

sf Significant figure(s)

dp Decimal place(s)

Q	Answer	Marks	Comments
1(a)	360°	B1	Condone lack of units. Condone 2π for 360°
		1	

Q	Answer	Marks	Comments
1(b)	(a+180°, b-1)	В1	Correct x -coordinate. Condone lack of units. Condone $a + \pi$ for $a + 180^\circ$
		B1	Correct <i>y</i> -coordinate. For both marks condone not given as coordinates but must be identified as <i>x</i> -coordinate and <i>y</i> -coordinate.
		2	

Q	Answer	Marks	Comments
1(c)	a + 90°	B1	Condone lack of units. Condone $a + \frac{\pi}{2}$ for $a + 90^{\circ}$ Can be seen as pair of coordinates but ignore the <i>y</i> -coordinate.
		1	

Question 1 Total	4	
------------------	---	--

Q	Answer	Marks	Comments
2(a)	$y = 5 \Rightarrow 5 = 23 - 3x$	M1	PI by correct <i>x</i> -coordinate of centre.
	(6, 5)	A 1	
		2	

Q	Answer	Marks	Comments
2(b)	$r^{2} = (9-6)^{2} + (11-5)^{2}$ or $r^{2} = (6-0)^{2} + (5-8)^{2}$ or $r^{2} = (6-0)^{2} + (5-2)^{2}$ or $r^{2} = 36+9$	M1	oe PI Uses coordinates of centre and coordinates of either P, Q or R ft their centre.
	$r = \sqrt{45}$ or $r = 3\sqrt{5}$ or $r^2 = 45$	A 1	PI by correct value of k in the equation of the circle.
	$(x-6)^2 + (y-5)^2 = 45$	B1ft	ft their centre. ft their r^2 provided M1 scored.
		3	

Q	Answer	Marks	Comments
2(c)	$\frac{11-5}{9-6} \left[=2\right]$		
	Gradient of Tangent = $\left[-\frac{1}{2}\right]$	M1	oe ft their centre.
	$(y-11) = -\frac{1}{2}(x-9)$	A1ft	ft their gradient of tangent provided
	$y = -\frac{1}{2}x + \frac{31}{2}$		M1 scored and any form.
	x + 2y = 31	A 1	Correct equation in correct form.
		3	

Question 2 To

Q	Answer	Marks	Comments
3(a)	$13^{2} = (x-3)^{2} + (2x-5)^{2} - 2(x-3)(2x-5)\cos\frac{\pi}{3}$ or $13^{2} = (x-2)^{2} + (x-3)^{2} - 2(x-2)(x-3)\cos\frac{2\pi}{3}$	M1	Correct substitution into Cosine Rule. Condone 169 for 13 ²
	$169 = (x^2 - 6x + 9) + (4x^2 - 20x + 25) - (2x^2 - 11x + 15)$ or $169 = (x^2 - 4x + 4) + (x^2 - 6x + 9) + (x^2 - 5x + 6)$	M1	oe Expansion of brackets. Condone one error.
	$169 = 3x^{2} - 15x + 19$ or $3x^{2} - 15x - 150 = 0$ and $x^{2} - 5x - 50 = 0$	A 1	AG Must be convinced. Must have further simplification before required result stated.
		3	

Q	Answer	Marks	Comments
3(b)	$[x^2 - 5x - 50 = 0 \Rightarrow]$ $x = 10$ or $x = -5$	B1	Condone omission of $x = -5$ PI by correct further working.
	$\left[\text{Arc Length} = \right] \left(10 - 3 \right) \times \frac{\pi}{3}$	M1	oe ft their 10 provided their $(10-3)$ is positive.
	$\begin{bmatrix} \text{Arc Length} = \end{bmatrix} \; \frac{7\pi}{3}$ or	A 1	CAO
	[Arc Length =] $7.3[303]$ [Perimeter =] $13+((2\times10-5)-(10-3))+\frac{7\pi}{3}$ or [Perimeter =] $13+8+\frac{7\pi}{3}$	m1	oe ft their 10 provided their length of <i>CD</i> is positive. ft their arc length.
	[Perimeter =] 28.3 [cm]	A 1	CAO AWRT
		5	
		T	

Question 3 Total

8

Q	Answer	Marks	Comments
4	$(x+5)^2 + + (y-7)^2 + = 0$	M1	oe PI by $(x^2 + 10x + 25) + (y^2 - 14y + 49) + = 0$
	$\left[(x+5)^2 + (y-7)^2 = \right] 64 - k^2$	A1	Rearranges to find expression for square of the radius. Simplified or unsimplified. PI by both correct critical values.
	$64 - k^2 > 0$	m1	Forms inequality. ft their expression for the square of the radius. Condone $64 - k^2 \ge 0$
	-8 < <i>k</i> < 8	A 1	CAO oe such as $ k < 8$ Condone $-8 \le k \le 8$ oe
		4	

Question 4 Total	4	
------------------	---	--

Q	Answer	Marks	Comments
5(a)	$\left[\log_{16}x^3 = \right]3y$	B1	
		1	

Q	Answer	Marks	Comments
5(b)	$[y = \log_{16} x \Rightarrow] 16^{y} = x$ $2^{4y} = x$	M1	PI
	$2^{4y} = x$ or $y = \frac{\log_2 x}{\log_2 16} \text{oe}$ or $\log_2 x = \frac{\log_{16} x}{\log_{16} 2} \left[= 4 \log_{16} x \right] \text{oe}$	М1	PI by subsequent working.
	$\left[\log_2 x = \right] 4y$	A 1	
		3	

Q	Answer	Marks	Comments
5(c)	log ₃ 81 = 4	M1	PI
	$4 \times 3y + 5 \times 4y - 4 = 60 \Rightarrow y = 2$	M1	PI Condone $\log_{16} x$ used instead of y
	$\left[x=16^2=\right] 256$	A 1	NMS scores M0M0A0
		3	

Question 5 Total	7	
------------------	---	--

Q	Answer	Marks	Comments
6(a)	$6\frac{\sin^2 x}{\cos x} = 5\left(1 + \frac{\sin^2 x}{\cos^2 x}\right)\cos^2 x$	М1	PI Uses $\tan x = \frac{\sin x}{\cos x}$ to write equation in terms of $\cos x$ and $\sin x$ only.
	$\left[5\left(1+\frac{\sin^2 x}{\cos^2 x}\right)\cos^2 x=\right]5\left(\cos^2 x+\sin^2 x\right)=5$	М1	PI Clear use of $\cos^2 x + \sin^2 x = 1$ to show $\left(1 + \frac{\sin^2 x}{\cos^2 x}\right) \cos^2 x = 1$
	$\left[6\frac{\sin^2 x}{\cos x} = 5 \Rightarrow 6\sin^2 x = 5\cos x\right]$ $\Rightarrow 6\left(1 - \cos^2 x\right) = 5\cos x$	M1	Clear use of $\cos^2 x + \sin^2 x = 1$ on LHS to form an equation in $\cos x$ only.
	$6 - 6\cos^2 x = 5\cos x$ $\Rightarrow 6\cos^2 x + 5\cos x - 6 = 0$	A 1	AG Must come from a convincing argument.
		4	

Q	Answer	Marks	Comments
6(b)	$\cos x = \frac{2}{3} , \cos x = -\frac{3}{2}$	B1	Considers the two possible values for cos <i>x</i>
	Indicates that $\cos x$ cannot take a value less than -1 [Hence the only real solutions satisfy $\cos x = \frac{2}{3}$]	E1	Eliminates $\cos x = -\frac{3}{2}$ by logical argument.
		2	

Q	Answer	Marks	Comments
6(c)	$\cos(x+35^{\circ}) = \frac{2}{3}$ or $x+35^{\circ} = \cos^{-1}(\frac{2}{3})$	M1	PI
	$x = 13.2^{\circ}$	A 1	CAO
	$x = -83.2^{\circ}$	A 1	Condone more accurate figures given.
		3	

Question 6 Total	9	
------------------	---	--

Q	Answer	Marks	Comments
7(a)	$ \begin{bmatrix} E(2X+100) = \\ 2 \times 200 + 100 \end{bmatrix} $	M1	Applies expectation formula PI
	=500 [dollars]	A 1	
		2	

Q	Answer	Marks	Comments
7(b)(i)	100	B1	
		1	

Q	Answer	Marks	Comments
7(b)(ii)	$\left[Var(X-Y) = \right]$ 25.2 + 4.7 ² or 25.2 + 22.09	M1	Applies variance formula PI Condone 25.2 + 4.7
	= 47.29	A 1	
		2	

Question 7 Tota	5	
-----------------	---	--

Q	Answer	Marks	Comments
8(a)(i)	$P(A \cup B) = 0.45 + 0.32 = 0.77$	B1	
		1	

Q	Answer	Marks	Comments
8(a)(ii)	$ \begin{bmatrix} P(A \cap B) = \\ 0.45 \times 0.32 = 0.144 \end{bmatrix} $ $ \begin{bmatrix} P(A \cup B) = 0.77 - 0.144 = \\ \end{bmatrix} $	М1	PI
	0.626	A 1	
		2	

Q	Answer	Marks	Comments
8(b)	$0.74 = 0.65 + 0.18 - P(C \cap D)$	M1	Uses addition formula to form equation to find $P(C \cap D)$
	$\left[P\!\left(C\cap D\right)=\right]0.09$	A 1	PI
	$\left[P(D \mid C) = \right] \frac{0.09}{0.65}$	M1	Applies conditional probability formula with their $P(C \cap D)$
	9 65	A1ft	Anything which rounds or truncates to 0.138 ft their 0.09 provided full method seen.
		4	

Question 8 Tota	7	
-----------------	---	--

Q	Answer	Marks	Comments
9(a)	np = 22.5, $np(1-p) = 12.375$	B1	Forms two equations using mean and variance.
	22.5(1-p) = 12.375	М1	Obtains equation in one variable.
	1-p = 0.55		
	p = 0.45	A 1	AG Be convinced.
	n = 50	B1	
		4	

Q	Answer	Marks	Comments
9(b)	$ \left[P(X=24) = \right] \begin{pmatrix} 50 \\ 24 \end{pmatrix} 0.45^{24} (1-0.45)^{50-24} $	M1	Applies probability formula or uses cumulative probability tables with their <i>n</i> or 0.7160 – 0.6134
	= 0.1026	A 1	PI AWRT
		2	

Q	Answer	Marks	Comments
9(c)	P(X > 19) = 1 - 0.1974	M1	PI Follow through their <i>n</i>
	= 0.8026	A 1	AWRT
		2	

	Question 9 Total	8	
--	------------------	---	--

Q	Answer	Marks	Comments
10(a)	$0^2 = 32^2 + 2 \times (-9.8) \times s$	M1	Substitutes correct values into $v^2 = u^2 + 2as$ or a correct pair of suvat equations. Condone sign error with -9.8
	[s=] 52.2 [metres]	A 1	Anything that rounds or truncates to 52 (52.24489)
		2	

Q	Answer	Marks	Comments
10(b)(i)	$[52.2 \times 2 - 2 =] 102.4 \text{ [metres]}$	B1ft	ft their value in Part (a) as long as it is larger than 2 Allow for answers between 102.4 and 102.5 (inclusive).
		1	

Q	Answer	Marks	Comments
10(b)(ii)	$2 = 32 \times t + 0.5 \times (-9.8) \times t^2$ or $0 = 32 - 9.8t_{up}$ and $50.2 = \frac{1}{2} \times 9.8t_{down}^2$	М1	PI Substitutes correct values into $s = ut + \frac{1}{2}at^2$ or a correct pair of suvat equations. Condone sign error with -9.8
	$4.9t^{2} - 32t + 2 = 0$ or $0 = 32 - 9.8t_{up} \text{ and } 50.2 = \frac{1}{2} \times 9.8t_{down}^{2}$ and $t = 3.2 \left[6530 \right] + 3.2 \left[02196 \right]$	М1	Forms a completely correct quadratic equation or pair of suvat equations and attempts to find a value of <i>t</i> PI By correct final answer.
	t = 6.47 [seconds]	A 1	AWRT 6.5 [May see $t = 0.063$ s rejected PI]
		3	

Question 10 Total	6	
-------------------	---	--

Q	Answer	Marks	Comments
11(a)	Total Distance = $\frac{12 \times (16 + 36)}{2}$	M1	Attempt to find total distance travelled. Minimum of either one fully correct suvat formula, or intention to add at least two correct, relevant areas if area not treated as a trapezium. PI
	[Total Distance =] $\frac{312}{36}$	M1	oe Divides their 'total distance' by 36
	$\frac{26}{3}$ [m s ⁻¹]	A 1	CAO Correct answer implies M1M1A1 Fraction must be simplified. Could be a mixed number. AWRT 8.7 if given as a decimal.
		3	

Q	Answer	Marks	Comments
11(b)	Acceleration (m s ⁻²) 2.5 2.0 1.5 1.0 0.5 0 4 8 12 16 20 24 28 32 36 -0.5 -1.0 -1.5	B1	3 horizontal line segments between correct time intervals (give bod for unclear, or missing, segment in the interval $12 < t < 28$). Ignore graph for values of t greater than 36. or $a = 1 \underline{\text{and}} a = -1.5 \text{and no other}$ values seen (could include $a = 0$).
	-2.5 -2.5	B1	A fully correct graph (give bod for unclear, or missing, segment in the interval $12 < t < 28$) Condone omission of vertical lines.
		2	

Question 11 Total 5

Q	Answer	Marks	Comments
12(a)	Statement that acceleration is zero.	B1	Condone $a=0$
	Statement that resultant force is zero.		
	5000 - 1500 - 3500 = 0	B1	oe Shows that the resultant force is zero by giving numerical values in a suitable equation. May form an equation for <i>R</i> and solve.
		2	

Q	Answer	Marks	Comments
12(b)	Thrust: $-3500 - 500 = 10000a$ $a_1 = -0.4$	M1	Considers correct forces on the trailer with 500 [N] as thrust. [a may be taken in either direction] Allow one error but must lead to a value for a
	Tension: -3500 + 500 = 10000a $a_2 = -0.3$	M1	Considers correct forces on the trailer with 500 [N] acting as tension. [a may be taken in either direction] Allow one error but must lead to a value for a
	Thrust: $D-1500+500=2000\times(-0.4)$ Tension: $D-1500-500=2000\times(-0.3)$	M1	Considers forces on the tractor with their value for a from considering thrust and/or tension. Condone a written instead of its value. Must be a correct equation.
	Thrust: [D =] 200 [N]	A 1	CAO
	Tension: [D =] 1400 [N]	A 1	CAO
			Candidates do not need to identify the 'type' of force in the rod at any point in this question. Whether they are considering thrust or tension should be ascertained by their shown working.

12(b) ALT	D-1500-3500 = 12000a or D-5000 = 12000a	M1	oe Considers tractor and trailer as a single particle and forms equation of motion simplified or unsimplified.
	Thrust: D + 500 - 1500 = 2000a or D - 1000 = 2000a	M1	oe Forms equation of motion for tractor with 500 [N] as thrust simplified or unsimplified.
	Thrust: $\begin{bmatrix} D + 500 - 1500 = 2000a \\ \text{and } D - 1000 = 2000a \Rightarrow \end{bmatrix}$ $D = 200 [N]$	A 1	CAO
	Tension: $D - 500 - 1500 = 2000a$ or $D - 2000 = 2000a$	M1	oe Forms equation of motion for tractor with 500 [N] as tension simplified or unsimplified.
	Tension: $\begin{bmatrix} D - 500 - 1500 = 2000a \\ \text{and } D - 2000 = 2000a \Rightarrow \end{bmatrix}$ $D = 1400 [N]$	A 1	CAO
			Candidates do not need to identify the 'type' of force in the rod at any point in this question. Whether they are considering thrust or tension should be ascertained by their shown working.
		5	_

Q	Answer	Marks	Comments
12(c)	-3500 = 10000a $a = -0.35$ $0 = 2 + (-0.35)t$	M1	Considers horizontal forces to find the correct value of acceleration (allow positive or negative) and substitutes their value for the acceleration into a correct suvat formula involving t
	t = 5.7	A 1	or better (eg 5.714) oe
		2	
	Question 12 Total	9	