

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS FM04

(9665/FM04) Unit FS2 Statistics

Mark scheme

January 2021

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordagaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2021 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

M Mark is for method

m Mark is dependent on one or more M marks and is for method

A Mark is dependent on M or m marks and is for accuracy

B Mark is independent of M or m marks and is for method and accuracy

E Mark is for explanation

√ or ft Follow through from previous incorrect result

CAO Correct answer only

CSO Correct solution only

AWFW Anything which falls within

AWRT Anything which rounds to

ACF Any correct form

AG Answer given

SC Special case

oe Or equivalent

A2, 1 2 or 1 (or 0) accuracy marks

–x EE Deduct x marks for each error

NMS No method shown

PI Possibly implied

SCA Substantially correct approach

sf Significant figure(s)

dp Decimal place(s)

Q	Answer	Marks	Comments
1(a)	H ₀ : There is not an association between use of app and passing maths examination H ₁ : There is an association between use of app and passing maths examination	B1	Must have both H₀ and H₁ Condone 'change the chance' in place of 'association'
		1	

Q	Answer	Marks	Comments
	$\sum \frac{\left(\left O - E\right - 0.5\right)^{2}}{E}$ $= \frac{\left(\left 72 - 66\right - 0.5\right)^{2} + \left(\left 28 - 34\right - 0.5\right)^{2}}{66} + \frac{\left(\left 60 - 66\right - 0.5\right)^{2} + \left(\left 40 - 34\right - 0.5\right)^{2}}{34} + \frac{\left(\left 40 - 34\right - 0.5\right)^{2}}{34}$ $\left[= \frac{5.5^{2}}{66} + \frac{5.5^{2}}{66} + \frac{5.5^{2}}{34} + \frac{5.5^{2}}{34} \right]$	M 1	Allow SC1 for using $\sum \frac{(O-E)^2}{E}$ (i.e. not using Yates correction) which is possibly implied by 3.2085
	= 2.6960[78]	A 1	AG oe $\frac{275}{102}$ each term shown
		2	

Q	Answer	Marks	Comments
1(c)	Degrees of freedom [dof], $v = 1$	B1	PI
	$cv = \chi_1^2(0.9) = 2.706$	B1	Critical value for $v = 1$, AWRT 2.71
	$2.696 < \chi_1^2 \ (0.9) = 2.706$, do not reject H ₀ Evidence to suggest there is not an association between use of app and passing maths examination	M1 A1	PI, allow 'accept H₀' ft their critical value. If their cv < 2.696, must see reject H₀ Must be correct contextual statement and consistent with their cv Allow 'support company's belief'
		4	
	Question 1 Total	7	

Q	Answer	Marks	Comments
2	$P(\overline{X} < 0.16 \mid \mu = 0.1468)$ $= P\left(z < \frac{0.16 - 0.1468}{0.04}\right)$	М1	Correct probability statement or standardises correct probability (PI by 0.33 seen)
	P(z < 0.33) = 0.6293	A 1	
	Power = $1 - 0.6293 = 0.371$ [to 3 sf]	A 1	
	Question 2 Total	3	

Q	Answer	Marks	Comments
3(a)	H₀: Distribution is uniform H₁: Distribution is not uniform	B1	
	dof $v = 6 - 1 = 5$	B1	PI by correct critical value
	expected values = 50	B1	Seen or used
	$\sum \frac{(O-E)^2}{E} = \frac{(50-50)^2}{50} + \frac{(43-50)^2}{50} + \frac{(38-50)^2}{50} + \frac{(63-50)^2}{50}$	М1	PI
	$+\frac{50}{61-50)^2} + \frac{(45-50)^2}{50}$		254
	= 10.16	A 1	oe $\frac{254}{25}$
	$\chi_5^2 (0.99) = 15.086$	B1	Finds critical value
	10.16 < 15.086, do not reject H ₀	A1ft	Allow 'accept H ₀ ' ft their test statistic and critical value Implied by correct conclusion in context
	Evidence to suggest that the die is fair	E1	Must be consistent with their conclusion on whether to accept H ₀ or not or their test statistic and critical value if not explicitly stated Must not be definite
		8	

Q	Answer	Marks	Comments
3(b)	χ_5^2 (0.90) = 9.236 and rejection of H ₀ with their 10.16 > 9.236	B1ft	ft their degrees of freedom from (a) [Note $\chi_4^2 (0.90) = 7.779$]
	For the higher significance level, there is a lower χ^2 value rejection of H ₀ or the critical region (tail) is increased	E1ft	ое
		2	
	Question 3 Total	10	

Q	Answer	Marks	Comments
4(a)	Both T and V are:		
	Functions of the random variables of a sample and not dependent on population parameters	E2	 Must contain emboldened key words E1 for one of the three statements: Uses Random Variables Calculated from a sample (Allow observations) Not dependent on any population parameters (Allow unknown parameters)
		2	

Q	Answer	Marks	Comments
4(b)	$E(T) = \sum_{k=1}^{n} E(X_k) = \sum_{k=1}^{n} \mu$	M1	Allow X for X_k
	$=n\mu \neq \mu$ [therefore not unbiased]	A 1	Must see $n\mu \neq \mu$
		2	

Q	Answer	Marks	Comments
4(c)(i)	$\begin{aligned} &\operatorname{Var}(X_k) = \operatorname{E}(X_k^2) - \operatorname{E}(X_k)^2 \\ &\operatorname{E}(X_k^2) = \operatorname{Var}(X_k) + \operatorname{E}(X_k)^2 \\ &\left[\operatorname{Var}(X_k) = \sigma^2, \ \operatorname{E}(X_k) = \mu\right] \end{aligned}$		Allow X for X_k
	$E\!\left(X_{k}^{2}\right) = \sigma^{2} + \mu^{2}$	B1	AG Be convinced
		1	

Q	Answer	Marks	Comments
4(c)(ii)	$Var(T) = E(T^2) - E(T)^2$	M1	Either for rearranging or
	$Var(T) = nVar(X) = n\sigma^2$		$Var(T) = n\sigma^2$
	$E(T)^2 = (n\mu)^2 = n^2\mu^2$		
	$E(T^2) = n\sigma^2 + n^2\mu^2$	A 1	AG , must see evidence of rearranging and $Var(T) = n\sigma^2$
		2	

Q	Answer	Marks	Comments
4(d)	$\sum_{k=1}^{n} E(X_k^2) = n(\sigma^2 + \mu^2)$	B1	Seen or used
	$E\left(\frac{nV}{n-1}\right) = \frac{n}{n-1} \left(\frac{1}{n}n\left(\sigma^2 + \mu^2\right) - \frac{\left(n\sigma^2 + n^2\mu^2\right)}{n^2}\right)$	М1	Requires substitution of their $\sum_{k=1}^{n} E(X_k^2)$
	$=\sigma^2$, therefore unbiased	A 1	Must see σ^2 and conclusion
		3	
	Question 4 Total	10	

Q	Answer	Marks	Comments
5(a)	$\overline{x} = 32.82$	B1	
	$s^2 = \frac{1}{10 - 1} \left(10843.9 - \frac{328.2^2}{10} \right)$	M1	
	$s^2 = 8.0417$ or $s = 2.8358(02845)$	A 1	AWRT 8.04 (s²) or 2.84 (s) oe $s^2 = \frac{9047}{1125}$
	$t_9(0.99) = 2.821$	B1	1123
	$32.82 \pm 2.821 \sqrt{\frac{8.0417}{10}}$	M1	Calculates confidence interval limits with their mean, their sample variance And their <i>t</i> -value. PI by correct answer
	(30.29, 35.35)	A 1	CAO
		6	

Q	Answer	Marks	Comments
5(b)	z = [+] 2.3263	B1	Seen or used, AWRT 2.326
	$\sigma = 3$	B1	PI
	$0.5 > 2.3263 \sqrt{\frac{3^2}{n}}$	M1	ft their z Allow = sign
	n = 195 [from 194.828]	A 1	Must be 195 and not 194 if z used
			If t used accept $n > 198$ from $t = 2.345$ to 2.351
		4	
	Question 5 Total	10	

Q	Answer	Marks	Comments
6(a)(i)	$E(\overline{X}) = \mu$	B1	
	$\operatorname{Var}(\overline{X}) = \frac{\sigma^2}{n}$	B1	
		2	

Q	Answer	Marks	Comments
6(a)(ii)	$E\!\left(\overline{X}\right) \!=\! \mu$, so estimator is unbiased	B1	Conclusion required
	$\operatorname{Var}\left(\overline{X}\right) \to 0$ as $n \to \infty$, so estimator is consistent	B1	Conclusion required
		2	

Q	Answer	Marks	Comments
6(b)	Efficiency $\frac{1}{\operatorname{Var}(\bar{X}_{A})} = \frac{40}{\sigma^{2}} \text{or} \frac{1}{\operatorname{Var}(\bar{X}_{B})} = \frac{60}{\sigma^{2}}$ Relative Efficiency $= \frac{\left(\frac{1}{\operatorname{Var}(\bar{X}_{B})}\right)}{\left(\frac{1}{\operatorname{Var}(\bar{X}_{A})}\right)} = \frac{\left(\frac{60}{\sigma^{2}}\right)}{\left(\frac{40}{\sigma^{2}}\right)}$	M1	Either expression or maybe seen in Relative Efficiency
	Relative Efficiency = 1.5	A 1	AG
		2	

Q	Answer	Marks	Comments
6(c)	$Var(T) = p^2 Var(\overline{X}_A) + (1-p)^2 Var(\overline{X}_B)$	B1	PI by correct derivative
	$\operatorname{Var}(T) = p^{2} \operatorname{Var}(\overline{X}_{A}) + (1-p)^{2} \operatorname{Var}(\overline{X}_{B})$ $\frac{\operatorname{d}(\operatorname{Var}(T))}{\operatorname{d}p} = 2p \frac{\sigma^{2}}{40} + 2(p-1) \frac{\sigma^{2}}{60}$		
	and $\frac{\mathrm{d}(\mathrm{Var}(T))}{\mathrm{d}p} = 0$	M1	May be seen as derivative of Efficiency
	$2p\frac{\sigma^2}{40} + 2(p-1)\frac{\sigma^2}{60} = 0$, leading to $p = 0.4$	A 1	oe by completing the square
	$\frac{\mathrm{d}^2 \left(\mathrm{Var} \left(T \right) \right)}{\mathrm{d} p^2} = \frac{\sigma^2}{12} > 0 \text{ , so minimum}$ variance or maximum efficiency	B1	Conclusion required with check
		4	
	Question 6 Total	10	

Q	Answer	Marks	Comments
7(a)	$S_m^2 = 2140.8$ or $S_f^2 = 2094.36$ $[S_m = 46.2687$ or $S_f = 45.7641]$	B1	PI allow any choice of subscripts or labelling, $S_m^2 = \frac{10704}{5}$, $S_f^2 = \frac{75397}{36}$
	$S_p^2 = \frac{(n_m - 1)S_m^2 + (n_f - 1)S_f^2}{n_m + n_f - 2}$ $n_m = 11, n_f = 9$	М1	AWRT 2141 or 2094 or AWRT 46.27 or 45.76 oe
	$S_p^2 = 2120$	A 1	AWRT 2120
		3	

Q	Answer	Marks	Comments
7(b)	H ₀ : $\mu_{m} = \mu_{f}$ H ₁ : $\mu_{m} > \mu_{f}$	В1	Both hypotheses
	$\overline{m} - \overline{f} = 274 - 232.89 = 41.11$	M1	oe $274 - \frac{2096}{9} = \frac{370}{9} \left[= 41\frac{1}{9} \right]$
	$t_{\text{calc}} = \frac{41.11 - 0}{\sqrt{2120\left(\frac{1}{11} + \frac{1}{9}\right)}}$	M1	ft their $\overline{m} - \overline{f}$ and their answer to (a)
	= 1.986[47]	A 1	AWRT 1.986 or 1.987 $p = 0.0312(12)$
	dof $v = [11+9-1-1=]$ 18	B1	PI by correct critical value
	$t_{\text{crit}} = t_{18} (0.95) = 1.734$	B1	
	1.986 > 1.734, reject H ₀		
	Evidence to support that the mean number of platelets is greater for males than females	E1ft	Must be in context Statement should not be definitive and not contradict any ft accepting H ₀
		7	

Q	Answer	Marks	Comments
7(c)	H ₀ : $\sigma_m^2 = \sigma_f^2$ H ₁ : $\sigma_m^2 \neq \sigma_f^2$	B1	Both hypotheses
	$F_{calc} = \frac{S_m^2}{S_f^2} = \frac{2140.8}{2094.36}$	M1	ft on variances
	= 1.0223	A 1	AWRT 1.022
	$v_1 = 10, v_2 = 8$ $F_{10,8}(0.95) = 4.295$	B1	Both dof correct, PI from correct F _{crit}
	$F_{10,8}(0.95) = 4.295$	B1	PI , $p = 0.9947$
	1.0223 < 4.295, insufficient evidence for the variance in number of platelets between males and females to be different from zero. The assumption is supported.	E1	No need to compare with other lower critical value [0.2594] as F _{calc} > 1 Condone omission of statement context. Statement should not be definite.
		6	
	Question 7 Total	16	

Q	Answer	Marks	Comments
8(a)	$M_{X_k}(t) = E(e^{tX_k}) = \sum_{x=1}^{\infty} e^{tx} p(1-p)^{x-1}$	M1	Applies mgf formula
	$= p e^{t} \sum_{x=1}^{\infty} ((1-p)e^{t})^{x-1}$	A 1	Correct formula Must start from $x = 1$ and sum to infinity or imply infinite series
	$[S_{\infty} =] \frac{pe^{t}}{1-(1-p)e^{t}} = \frac{p}{e^{-t}-(1-p)}$	M1 A1	M1: Identify as geometric progression, $a = pe^t$, $r = (1 - p)e^t$ oe [This may be seen in S_{∞}]
			A1: AG Be convinced
		4	

Q	Answer	Marks	Comments
8(b)	$M'_{X_k}(t) = \frac{pe^{-t}}{\left(e^{-t} - (1-p)\right)^2}$	M1	Attempt to differentiate
	$\mu = M'_{X_k}(0) = \frac{p}{p^2} = \frac{1}{p}$	A 1	Substitutes $t = 0$ into correct expression and gives correct answer
		2	

Q	Answer	Marks	Comments
8(c)(i)	$\left[\left(M_{X_k}(t)\right)^2 = \right] \frac{\left(\frac{1}{6}\right)^2}{\left(e^{-t} - \left(1 - \frac{1}{6}\right)\right)^2}$	M1	$\frac{p^2}{\left(e^{-t}-(1-p)\right)^2}$
	$=\frac{1}{\left(6e^{-t}-5\right)^2}$	A 1	AG
		2	

Q	Answer	Marks	Comments
8(c)(ii)	$\left[\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{p^2}{\left(\mathrm{e}^{-t}-(1-p)\right)^2}\right)=\right] \frac{12\mathrm{e}^{-t}}{\left(6\mathrm{e}^{-t}-5\right)^3}$	M1	Attempt at differentiation
	When $t = 0$, $\mu = \frac{12e^0}{\left(6e^0 - 5\right)^3}$		
	μ = 12	A 1	AG Be convinced Must see clear evidence of use of $t = 0$
		2	

Q	Answer	Marks	Comments
8(d)	$[M_Y(t)] = \frac{p^n}{(e^{-t} - (1-p))^n} = \frac{1}{(6e^{-t} - 5)^n}$	B1	Identifies correct moment generating function
	$\left[M'_{Y}(t)=\right] \frac{np^{n}e^{-t}}{\left(e^{-t}-(1-p)\right)^{n+1}} = \frac{6ne^{-t}}{\left(6e^{-t}-5\right)^{n+1}}$		
	$\left[M_{Y}''(t)\right] = \frac{6ne^{-t}\left(6ne^{-t}+5\right)}{\left(6e^{-t}-5\right)^{n+2}}$	M1	Attempt to find first derivative and second derivative
	Use of $\sigma^2 = M_Y''(0) - M_Y'(0)^2$	M1	Must substitute $t = 0$ correctly
	$M_Y'(0) = \frac{6n}{(6-5)^{n+1}} = 6n$		
	$M_Y''(0) = \frac{6n(6n+5)}{(6-5)^{n+2}} = 36n^2 + 30n$		
	$\sigma^2 = 36n^2 + 30n - (6n)^2$		
	$\sigma^2 = 30n$	A 1	
		4	
	Question 8 Total	14	