

Please write clearly in	block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work

INTERNATIONAL A-LEVEL MATHEMATICS

(9660/MA03) Unit P2 Pure Mathematics

Friday 17 January 2020 07:00 GMT Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the Oxford International AQA booklet of formulae and statistical tables (enclosed).
- You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working: otherwise marks may be lost.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
TOTAL	

		Answer all questions in the spaces provided.	Do not wri outside th box
1	(a) (i)	Express $5 \sin \theta - 12 \cos \theta$ in the form $R \sin(\theta - \alpha)$, where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$, giving the value of α to the nearest 0.1° [3 marks]	
		Answer	
1	(a) (ii)	Hence solve the equation	
		$5\sin\theta - 12\cos\theta = -1$	
		in the interval $-180^{\circ} < \theta < 180^{\circ}$, giving all solutions to the nearest 0.1° [3 marks]	
		Answer	

1 (b)	Solve the equation		Do not write outside the box
	$2 \cot^2 x = 10 - 5 \operatorname{cosec} x$		
	in the interval $-90^{\circ} < x < 270^{\circ}$, giving all solutions to the nearest degree.	[5 marks]	
	Answer		11

2		The function f is defined by	Do not write outside the box
		$f(x) = \sin^{-1} (2x - 1)$	
2	(a)	State the largest possible domain of f. [1 mark]	
		Answer	
2	(b)	On the axes below, sketch the graph of $y = f(x)$.	
		Show the coordinates of the end-points on the graph. [2 marks]	

2 (c)	Describe a sequence of two geometrical transformations that maps the graph of $y = \sin^{-1} x$ onto the graph of $y = \sin^{-1} (2x - 1)$ [4 marks]	
2 (d)	The root of the equation $\sin^{-1}(2x-1)+x-1=0$ is α . Show that α lies between 0.6 and 0.7 [2 marks]	- - -
	Question 2 continues on the next page	-

2	(e)	Use the iterative formula	Do not write outside the box
		$x_{n+1} = \frac{1 + \sin(1 - x_n)}{2}$ with $x_1 = 0.6$	
		to find the values of x_2 and x_3 , giving your answers to three decimal places.	
		Answer	11

3	(a)	Find $\int x \ln x dx$	
			[3 marks]
		Answer	
~	(1.)	The stable sector	
3	(b)	Find $\int \ln x dx$	[3 marks]
3	(b)	Find $\int \ln x dx$	[3 marks]
3	(b)	Find $\int \ln x dx$	[3 marks]
3	(b)	Find $\int \ln x dx$	[3 marks]
3	(b)	Find $\int \ln x dx$	[3 marks]
3	(b)	Find $\int \ln x dx$	[3 marks]
3	(b)	Find $\int \ln x dx$	[3 marks]
3	(b)	Find j ln x dx	[3 marks]
3	(b)	Find J ln x dx	[3 marks]
3	(b)	Find J ln x dx	[3 marks]

Turn over ►

6

Do not write outside the box

4	(a)	The polynomial $f(x)$ is defined by
		$f(x) = 8x^3 + bx^2 + cx + 6$
		where b and c are constants.
		When $f(x)$ is divided by $(2x - 1)$ the remainder is 5.25
		When $f(x)$ is divided by $(2x - 3)$ the remainder is -3.75
		Find the value of b and the value of c . [4 marks]
		b= c=

Do not write outside the box

4 (b) Show that
$$\frac{12x^3 - 8x^2 + x + 7}{4x^2 - 1}$$
 can be written in the form $3x + d + \frac{dx + f}{4x^2 - 1}$ where *d*, *e* and *f* are integers. [4 marks]

5 (a) Express
$$\frac{12}{9-u^2}$$
 in the form $\frac{A}{3-u} + \frac{B}{3+u}$ [2 marks]

5	(b)	Use the substitution $u = \sin x$ to find the exact value of	$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{12\cos x}{8 + \cos^2 x} \mathrm{d}x$	
		Give your answer in the form $\ln q$, where q is a rational nu	mber.	[6 marks]
		Answer		

Turn over ►

8

6 (a) (i)	Find the binomial expansion of $(1 + 2x)^{0.5}$ in ascending powers of x up to and including the term in x^2
	[2 marks]
	Answer
6 (a) (ii)	Find the binomial expansion of $(1-4x)^{-0.5}$ in ascending powers of x up to and
	[2 marks]
	Answer
i (b) (i)	Hence find the binomial expansion of $\sqrt{\frac{1+2x}{1-4x}}$ in ascending powers of x up to and
	including the term in x^2
	Answer

6	(b) (ii)	State the values of <i>x</i> for which the expansion of $\sqrt{\frac{1+2x}{1-4x}}$ is valid.	Do not write outside the box
		[1 mark]	
		Answer	
6	(c)	Use your expansion of $\sqrt{\frac{1+2x}{1-4x}}$ to find an estimate for $\sqrt{2}$, giving your answer to	
		three decimal places. [3 marks]	
		Answer	10

7	A curve has equation $y = e^{3x} - 24x$	Do n outs t
7 (a)	Find an equation of the tangent to the curve at (0, 1) [3 marks]	
	Answer	
7 (b)	Answer Find the coordinates of the stationary point of the curve, giving your answer in an exact form. [3 marks]	
7 (b)	Answer Find the coordinates of the stationary point of the curve, giving your answer in an exact form. [3 marks]	
7 (b)	Answer Find the coordinates of the stationary point of the curve, giving your answer in an exact form. [3 marks]	
7 (b)	Answer Find the coordinates of the stationary point of the curve, giving your answer in an exact form. [3 marks]	
7 (b)	Answer Find the coordinates of the stationary point of the curve, giving your answer in an exact form. [3 marks]	
7 (b)	Answer Find the coordinates of the stationary point of the curve, giving your answer in an exact form. [3 marks]	
7 (b)	Answer Find the coordinates of the stationary point of the curve, giving your answer in an exact form. [3 marks]	

7	(c)	Find $\frac{d^2 y}{d^2}$ and hence determine the nature of this stationary point.		Do not write outside the box
		dx ²	[3 marks]	
		Answer		9
		Turn over for the next question		
			Turn over ►	

	During a scientific experiment a liquid evaporates.
	The rate of change of the evaporated mass, x grams, is directly proportional to the mass of the liquid which remains at time t minutes after the start of the experiment.
	Initially there were 80 grams of the liquid.
a)	Explain briefly why this information can be represented by the differential equation
	$\frac{\mathrm{d}x}{\mathrm{d}t} = k(80 - x)$
	[1 mark]
)	After 60 minutes, 30 grams of the liquid has evaporated.
,	Solve the differential equation in part (a) to find the value of h
	5 [5 marks]

8	(c) (i)	Find the number of grams of the liquid that has evaporated after 120 minutes. [2 marks]
		Answer
8	(c) (ii)	Find how many minutes it takes for there to be only 10 grams of the liquid remaining. [3 marks]
		Answer

Turn over ►

¹¹

	<u> </u>	Do not write outside the box
9	The region bounded by the curve $y = \frac{1}{2+x}$, the lines $y = 0.2$, $y = 0.25$ and the y-axis is	
	rotated through 2π radians about the <i>y</i> -axis to form a solid.	
	Find the exact value of the volume of the solid generated. [6 marks]	
	[•	
	Answer	6

10 (a)	Use the mid-ordinate rule with six strips, to find an estimate for $\int_{1.5}^{3} x^{-x} dx$, giving your answer to three decimal places. [4 marks]	Do not write outside the box
10 (b)	Answer By taking logarithms of both sides of $y = x^{-x}$ and then using implicit differentiation, find $\frac{dy}{dx}$, giving your answer in terms of x only. [4 marks]	
	Answer	8

11		The point A has coordinates $(10, 2, -3)$	Do not writ outside the box
		The point R has coordinates $(2, 2, 5)$.	
		The point <i>B</i> has coordinates (2, -2 , 5).	
11	(a)	Find the vector equation of the line AB and hence show that it can be written as	
		$\mathbf{r} = \begin{bmatrix} 4\\-1\\3 \end{bmatrix} + \lambda \begin{bmatrix} 2\\1\\-2 \end{bmatrix}$ [4 marks]	
		Answer	
11	(b)	The point <i>D</i> has coordinates $(-2, 1, 7)$.	
		The point <i>C</i> lies on the line <i>AB</i> .	
		The line <i>CD</i> is perpendicular to the line <i>AB</i> .	
11	(b) (i)	Find the coordinates of C. [5 marks]	

	—
Answer	
11 (b) (ii) Show that the distance $CD = \sqrt{q}$ where q is a constant.	
[2 mar	ks]
11 (c) The point $P(4+2p, -1+p, 3-2p)$ lies on the line <i>AB</i> such that triangle <i>DCP</i> is isosceles.	
Find the possible exact values of p , giving your answers in the form $s + t \sqrt{q}$,	
where <i>s</i> and <i>t</i> are constants.	
lo mar	ksj
	_
	_
	-
	-
Answer	

16

Do not write outside the box

12	A curve has equation $6y^2 + 2e^{4x} = y^3 e^x$		Do not write outside the box
12 (a)	Given that the curve has a stationary point (p, q) , show that $2e^p = q$	[5 marks]	
12 (b)	Find the exact value of p and the exact value of q .	[4 marks]	
			9
	Answer		

The tangent to the curve at the point $P(ap^2, 2ap)$ meets the tangent to the curve at the point $Q(aq^2, 2aq)$ at the point R . Given that p and q vary so that $p^2 + q^2 = 1$, find the Cartesian equation of the curve on which R lies, giving your answer in the form $y^2 = f(x)$ [7 marks]	A curve C is defined by the parametric equations $x = at^2$, $y = 2at$, where a is a constant.
Given that p and q vary so that $p^2 + q^2 = 1$, find the Cartesian equation of the curve on which R lies, giving your answer in the form $y^2 = f(x)$ [7 marks]	The tangent to the curve at the point $P(ap^2, 2ap)$ meets the tangent to the curve at the point $Q(aq^2, 2aq)$ at the point R .
	Given that <i>p</i> and <i>q</i> vary so that $p^2 + q^2 = 1$, find the Cartesian equation of the curve o which <i>R</i> lies, giving your answer in the form $y^2 = f(x)$ [7 mark
Answer	
Answer	
Answer	
Answer	
	Answer
END OF QUESTIONS	END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 Oxford International AQA Examinations and its licensors. All rights reserved.

IB/G/Jan20/MA03