

Please write clearly ir	n block capitals.	
Centre number	Candidate number]
Surname		_
Forename(s)		_
Candidate signature	I declare this is my own work.	-

INTERNATIONAL AS **MATHEMATICS**

(9660/MA01) Unit P1 Pure Mathematics

Tuesday 14 January 2020 07:00 GMT Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the Oxford International AQA booklet of formulae and statistical tables (enclosed).
- You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

		Answer all qu	estions in the spaces	s provided.			Do not write outside the box
1		The equation	$y = \left(4x^2 - x^{\frac{5}{2}}\right) \div \left($	$\left(\frac{1}{4x}\right)^{\frac{1}{2}}$			
		can be written in the form	$y = ax^p - bx^q$,			
		where a, b, p and q are positive	constants.				
1	(a) (i)	Find the value of <i>p</i> .					
		Circle your answer.				[1 mark]	
		1	$\frac{3}{2}$	<u>5</u> 2	4		
1	(a) (ii)	Find the value of q .					
		Circle your answer.				[1 mark]	
		$\frac{5}{4}$	2	3	5		

2	Let $f(x) = x^2 + bx + c$ where <i>b</i> and <i>c</i> are real numbers.	Do not write outside the box
	It is given that:	
	 the line x = 5 is the line of symmetry of the curve with equation y = f(x) the discriminant of f(x) is zero. 	
2 (a)	Find the value of <i>b</i> and the value of <i>c</i> . [2 marks]	

3	(b)	AB and AC are two sides of a rectangle.	Do not write outside the box
		L_2 has the equation $y = mx + \frac{22}{3}$	
3	(b) (i)	State the value of <i>m</i> . [1 mark]	
3	(b) (ii)	m =Show that the <i>x</i> -coordinate of <i>C</i> is 11 [1 mark]	
3	(c)	The point <i>D</i> is the mid-point of <i>BC</i> . Find an equation of the line which passes through <i>D</i> and is parallel to L_1 [3 marks]	
		Answer	8

4 (a)	The expression $(2-x)^4$ can be written in the form $16-32x+ax^2-bx^3+x^4$ where <i>a</i> and <i>b</i> are positive integers.		Do not write outside the box
	Show that $a = 24$ and find the value of b .	[3 marks]	
	<i>b</i> =		

4 (b)	Using the expansion in part (a), show that the value of $\left(2-\frac{1}{\sqrt{2}}\right)^4$ can be		Do not write outside the box
	written in the form $\frac{p-q\sqrt{2}}{r}$ where <i>p</i> , <i>q</i> and <i>r</i> are integers.		
	r	[4 marks]	
			7

_

5		The equation of a curve <i>C</i> is given by $y = \frac{(x-1)(x-14)}{x}, x \neq 0$
5	(a)	Find an equation of the tangent to <i>C</i> at the point where $x = 2$ [7 marks]
		Answer

5	(b)	<i>P</i> is the point on <i>C</i> where $x = -4$	Do not write outside the box
		Explain whether <i>y</i> is increasing or decreasing at <i>P</i> . [2 marks]	
			9
		Turn over for the next question	
		Turn over ►	

		_
6	Grady sells boxes of chocolates.	Do r out:
	In the first month, Month 1, he sells 36 boxes.	
	Each month after Month 1, he sells 22 more boxes than he sold the previous month.	
6 (a) () The number of boxes he sells each month forms a sequence.	
	State, with a reason, whether this is an arithmetic sequence or a geometric sequence. [2 marks]	
6 (a) (i) Find an expression in terms of <i>n</i> for the number of boxes he sells in Month <i>n</i>. [2 marks] 	
	Answer	

12

6 (b)	Grady makes £12 profit on each box of chocolates he sells.		Do not write outside the box
	Over the first N months, he makes a total profit of exactly £90 000		
	By forming and solving a quadratic equation, find the value of <i>N</i> .	[5 marks]	
	N =		9
		Turn over ►	

The	e gradient at any point (x, y) of a curve is given by
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + ax - 36$
whe	ere <i>a</i> is a constant.
The	e curve passes through the points $(1, -7)$ and $(3, -5)$
(a) Find	d the equation of the curve. [7 marks]
	1/ =
	y —

7	(b) (i)	Find $\frac{d^2 y}{dr^2}$	Do not write outside the box
		[1 mark]	
		$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = $	
7	(b) (ii)	The curve has a minimum point <i>P</i> .	
		Find the <i>x</i> -coordinate of <i>P</i> .	
		[3 marks]	
		x =	11
		Turn over ►	

			Do not write
8		A geometric series has first term a , common ratio r and n th term u_n	outside the box
		The sum to infinity of the series is 425	
		The sum of the first two terms is 408	
		The series only contains positive terms.	
8	(a) (i)	Show that $r = \frac{1}{5}$ [4 marks]	
8	(a) (ii)	Find the value of <i>a</i> . [2 marks]	
		<i>a</i> =	

8 (b)	Show that $\sum_{k=1}^{k+1} (1)^{k-1}$	Do not write outside the box
	$\sum_{n=k}^{\infty} u_n = p \left(\frac{1}{q}\right)$	
	where p and q are positive integers. [4 marks]	5]
		_
		_
		-
		_
		_
		_
		-
		_
		-
		_
		10
	Turn over	▶

9	(b)	Find the area of the shaded region bounded by the curve C ₁ , the lines x = 1, x = 8 and the x-axis. [3 marks]	Do not w outside box
		Answer	
9	(c)	The translation $\begin{bmatrix} 0 \\ -2 \end{bmatrix}$ maps the curve C_1 onto the curve C_2	
9	(c) (i)	Using your answer to part (b), find the area of the region bounded by the curve C_2 , the lines $x = 1$, $x = 8$ and the <i>x</i> -axis. [2 marks]	
		Answer	
9	(c) (ii)	Find the equation of C ₂ [1 mark]	
		Answer	9

Turn over ►

10	A curve has the equation			outside box
		$y = 2x^{2} + 4(p+3)x + 12p + q + 12$		
	where p and q are constar	nts.		
	The curve crosses the <i>x</i> -ax	xis at two distinct points.		
10 (a)	Show that	$2p^2 - q + 6 > 0$		
			[3 marks]	

10 (b)	The curve passes through the point $(0, 32)$.	
	Find the possible values of <i>p</i> . [5 marks]	
	Answer	8
	END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 Oxford International AQA Examinations and its licensors. All rights reserved.

