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1 

  
The matrix  

0 0 1
0 1 0
1 0 0

 
 =  
−  

A  

 
 

1 (a)  Describe fully the single transformation represented by the matrix A  
 [2 marks] 

  

  

  

  

  

  

 
 

1 (b)  The matrix B  represents a reflection in the plane zy =  
 
Find the matrix −+ + 1B BA  

 [2 marks] 
  

  

  

  

  

  

  

  

  

  

 
Answer  

 
 

 
4 
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2   Evaluate the improper integral 
 

� � 
2𝑥𝑥

𝑥𝑥2 + 9
 −  

6
3𝑥𝑥 + 2

 � dx
∞

0
 

 
showing the limiting process used. 
 
Give your answer in the form ln p , where p is a rational number. 

[6 marks] 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 
Answer  

 
6 
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3 (a)  Use a vector product to show that the area of triangle OAB  is  10
2
3

 

 [3 marks] 
  

  

  

  

  

  

  

  

  

 
 

3 (b)  The vector c  is given by = − +c i j k3 7  
 
Use a scalar triple product to determine whether or not  a , b  and c  are coplanar 
vectors. 

[2 marks] 
  

  

  

  

  

  

  

 
Answer  

 

3   The points A  and B  have position vectors a  and b  respectively relative to an  
origin O , where 
 

kjia 22 +−=     and     = − + +b i j k3 2  

       

 
5 
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( )1 1 44 3 1
9 9

n
r

n

r
r n−

=
× = + −∑

1

 

 [6 marks] 
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5   The line  L  has equation  
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5 (a) (i) Find the direction cosines of  L  

[3 marks] 
  

  

  

  

  

  

  

  

  

 
Answer  

 
 

5 (a) (ii) Find the acute angle between  L  and the x-axis, giving your answer to the nearest 1.0   
[1 mark] 

  

  

  

  

 
Answer  
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5 (b)  The plane Π  has equation      12
1
1
1

 . =















r  

 
  
Find the position vector of the point of intersection of  L  and Π  

 [4 marks] 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

 
Answer  

 
 
 
  

 
8 
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  6   Find the general solution of the differential equation 
 

xxxy
x
y 3cos2699

d
d 2

2

2

++=+  

[9 marks] 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



9 

*09* 

Turn over ► 
 

IB/G/Jan20/FM03 

 

Do not write 
outside the  

box 

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 
Answer  

 

 
9 
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  7 (a)   Using the definition 
 

yy

yy

y −

−

+
−

=
ee
eetanh  

 
prove that, for 11 <<− x  
 









−
+

=−

x
xx

1
1 ln 

2
1tanh 1  

 [3 marks] 
  

  

  

  

  

  

  

  

  

  

  

 
 

7 (b) (i) Hence find, in terms of r , the coefficient of  xr  in the Maclaurin series 
expansion of tanh x−1  

 [2 marks] 
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Answer  

 
 

  7 (b) (ii) Hence, or otherwise, given that  y= tanh x−1 , deduce the value of  
 









+++  

d
d

d
d

d
d

d
d 7

7

5

5

3

3

x
y

x
y

x
y

x
y

  when  0=x  

[2 marks] 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 
Answer  

 
7 
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8   The matrix  k
k

− 
 =  
  

A
1 2 1
1 4
2 3

 ,  where k is a real constant. 

 

8 (a)  Show that A  is a non-singular matrix. 
 [3 marks] 

  

  

  

  

  

  

  

  

 
8 (b)  Find −A 1  in terms of k 

[5 marks] 
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Answer  

 
 

  8 (c)  Use 1−A  to solve the equations 

 

2 1

4 3

2 3 6

x y z

x ky z

x y kz

+ − =

+ + =

+ + =

 

 
Give your solution in terms of k  

 [3 marks] 
  

  

  

  

  

  

  

  

  

  

  

  

  

 

x =  y =  z =  

 
11 
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9   The equation 
 

( )  0 ,          where   0   and   0   mx x m n x x n m n+ + + − + = ≠ ≠4 3 2  
 
has roots , ,  and  
 
It is given that 0+ =  

 

9 (a) (i) Explain why  
m
1

−=+  

 [1 mark] 
  

  

 
9 (a) (ii) Show that  mn −=  

[6 marks] 
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9 (b)  Hence find all possible values of m for which the roots , ,  and  are real and 
distinct.  

[4 marks] 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 
Answer  

 
11 
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10   A curve C  is defined for 0>x  
 
At each point ( )yx  ,  on the curve C  
 

x
xy

xx
y cos2

d
d

=+
 

 
10 (a)  By using an integrating factor, find the general solution of this differential equation. 

[5 marks] 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 
Answer  

  



17 

*17* 

Turn over ► 
 

IB/G/Jan20/FM03 

 

Do not write 
outside the  

box 

 

10 (b)  It is given that, as  0→x  ,  y k→ ,  where k is a constant. 
 

 

10 (b) (i) Find the value of k 
 
Fully justify your answer. 

 [4 marks] 
  

 
  

  

  

  

  

  

  

  

  

  

  
 

k =  
 
 
10 (b) (ii) A student states that the curve xky cos=  passes through all the stationary points of C  

 
Determine whether or not the student is correct. 
 
Fully justify your answer. 

 [2 marks] 
  

  

  

  

  

 

 
11 
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 [2 marks] 

 
 

 

  

  

  

  

  

 
–  i 128 =  

 
 

11 (b)  Solve the equation 
7  i  z + =128 0  

 
giving your solutions in the form ie r , where r > 0  and ππ ≤<−  

[4 marks] 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

 
Answer  
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11 (c)  It is given that  ( ) ( )7  i   i  z z k Q z+ = +128  , where k is an integer. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
11 

 
(c) 

 
(ii) 

 
Express ( )zQ   as a product of three quadratic factors, each in the form 

 
( ) tzqpz ++  )πsin( i2  

 
 where  p  and  t  are integers and 1

20 q< <   
[4 marks] 

  

  

  

  

  

  

  

  

  

  

 ( )zQ  =  

 

  
11 

 
(c) 

 
(i) 

 
On the Argand diagram below, show the six roots of the equation ( ) 0 =zQ  

 [3 marks] 

 
13 
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12   The diagram shows a sketch of the curve 1C , the pole O  and the initial line.     
   

 
 

The curve 1C  has polar equation     
cos23
2

+
=r  ,      π20 ≤≤  

 
 

The circle 2C  has polar equation    





 −=

6
π sinr  ,     

6
π7

6
π

≤≤  

 
 
12 (a) (i) Verify that the pole O  lies on the circle 2C  

[1 mark] 
 
 

 

  

  

 
 

12 (a) (ii) Use integration to show that the area of the circle 2C  is  π 
4
1

  

[3 marks] 
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12 (b)  The line L  has Cartesian equation    3 1y x= −  
 
The line L  intersects the curve 1C  at the points P  and Q , where OQOP >  

 
12 (b) 

 
 

(i) By finding the polar coordinates of the points P  and Q  , verify that the circle 2C  also 
passes through the points P  and Q  

[5 marks] 
  

  

  

  

  

  

  

  

  

  

 
 12 (b) (ii) Explain why OP  is a diameter of the circle 2C   

[2 marks] 
  

  

 
 12 (c)  Hence find the Cartesian equation of the tangent to the circle 2C  at the point P  

[4 marks] 
  

  

  

  

  

 
Answer 
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13 (a) 
 

Show that the length of the curve from dx −=  to dx =   is  2 sinh da
a

 
 
 

 

[4 marks] 
  

  

  

  

  

  

  

  

  

 
13 (b)  The ends of a chain are attached to points P  and Q  such that PQ  is horizontal and of 

length 2d 
 
The chain hangs below PQ .  Its shape is modelled by the curve C  
 
The length of the chain is s  
 

The lowest point of the chain is at a distance 
n
s

2
 below PQ , where 1>n  

 

 

13 

 

(b) 

 

(i) 

 

Use a suitable sketch to  show that    cosh
2
s da a
n a

 + =  
 

 

[1 mark] 
  

13 
  

A curve C  has equation  cosh xy a
a

 =  
 

  ,  where a  is a positive constant. 
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13 (b) (ii) Hence show that 

42

2
2 sa

n
sa +=+  

[2 marks] 
  

  

  

  

  

  

 

13 (b) (iii) Show that  ( ) 







−
+

−=
1
1ln 1

2
2

n
nn

n
sPQ  

[7 marks] 
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END  OF  QUESTIONS 
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