

Please write clearly in block capitals.					
Centre number	Candidate number				
Surname					
Forename(s)					
Candidate signature	I declare this is my own work.				

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS

(9665/FM03) Unit FP2 Pure Mathematics

Monday 20 January 2020 07:00 GMT Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the Oxford International AQA booklet of formulae and statistical tables (enclosed).
- You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
TOTAL		

		Answer all questions in the spaces provided.		Do not wi outside t box
1		The matrix $\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$		
1	(a)	Describe fully the single transformation represented by the matrix $ {f A} $	[2 marks]	
1	(b)	The matrix B represents a reflection in the plane $y = z$		
		Find the matrix $\mathbf{A} + \mathbf{B} + \mathbf{B}^{-1}$	[2 marks]	
		Answer		4

2	Evaluate the improper i	ntegral

 $\int_0^\infty \left(\frac{2x}{x^2+9} - \frac{6}{3x+2}\right) \mathrm{d}x$

showing the limiting process used.

Give your answer in the form $\ln p$, where p is a rational number.

Answer

[6 marks]

		outside the
3	The points A and B have position vectors \mathbf{a} and \mathbf{b} respectively relative to an origin O , where	
	$\mathbf{a} = 2\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ and $\mathbf{b} = -3\mathbf{i} + 2\mathbf{j} + \mathbf{k}$	
3 (a	Use a vector product to show that the area of triangle OAB is $\frac{3}{2}\sqrt{10}$ [3 marks]	
3 (b) The vector \mathbf{c} is given by $\mathbf{c} = 3\mathbf{i} - \mathbf{j} + 7\mathbf{k}$	
	Use a scalar triple product to determine whether or not a , b and c are coplanar vectors.	
	[2 marks]	
	Answer	5

0 5

5		The line <i>L</i> has equation
		$\begin{pmatrix} \mathbf{r} - \begin{bmatrix} 3\\1\\2 \end{bmatrix} \end{pmatrix} \times \begin{bmatrix} 4\\-8\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$
5	(a) (i)	Find the direction cosines of L [3 marks]
		Answer
5	(a) (ii)	Find the acute angle between L and the <i>x</i> -axis, giving your answer to the nearest 0.1° [1 mark]
		Answer

Do not write
outside the
box

5	(b)	The plane Π has equation $\mathbf{r} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 12$	Do not write outside the box
		Find the position vector of the point of intersection of L and Π [4 marks]	
		Answer	8
		Turn over ►	

i	Find the general solution of the differential equation	
	$\frac{d^2 y}{dx^2} + 9y = 9x^2 + 6x + 2\cos 3x$	
		[9 marks]

Do not write outside the box

	Do not write outside the
	box
	9
Answer	

	Do not write outside the
7 (a) Using the definition	box
$e^{y} - e^{-y}$	
$\tanh y = \frac{e^{y}}{e^{y} + e^{-y}}$	
prove that, for $-1 < x < 1$	
$\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1+x}{1+x} \right)$	
$2^{m}(1-x)$	[2] maguka]
	[3 marks]
7 (b) (i) Hence find, in terms of r, the coefficient of x^r in the Maclaurin series	
expansion of tanh ⁻ 'x	[2 marks]

		Dc oL	o not write utside the box
	Answer		
7 (b) (ii)	Hence, or otherwise, given that $y = \tanh^{-1} x$, deduce the value of		
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{\mathrm{d}^3 y}{\mathrm{d}x^3} + \frac{\mathrm{d}^5 y}{\mathrm{d}x^5} + \frac{\mathrm{d}^7 y}{\mathrm{d}x^7}\right) \text{ when } x = 0$		
		[2 marks]	
	Answer		7

Do not write outside the $\begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$ The matrix $\mathbf{A} = \begin{bmatrix} 1 & k & 4 \\ 2 & 3 & k \end{bmatrix}$, where *k* is a real constant. 8 8 (a) Show that \mathbf{A} is a non-singular matrix. [3 marks] Find \mathbf{A}^{-1} in terms of k8 (b) [5 marks]

12

box

Do not write outside the box Answer _____ 8 (c) Use A^{-1} to solve the equations x + 2y - z = 1x + ky + 4z = 32x + 3y + kz = 6Give your solution in terms of k[3 marks] 11 x = _____ y = ____ z = ____

9		The equation
		$mx^{4} + x^{3} + (m+n) x^{2} - x + n = 0$, where $m \neq 0$ and $n \neq 0$
		has roots $lpha$, eta , γ and δ
		It is given that $\alpha + \beta = 0$
9	(a) (i)	Explain why $\gamma + \delta = -\frac{1}{m}$
9	(a) (ii)	Show that $n = -m$ [6 marks]

Do not write outside the box

9 (k	(b)	Hence find all possible values of <i>m</i> for which the roots α , β , γ and δ are real and distinct
		[4 marks]
		Answer

Turn over ►

11

		Do not write
10	A curve C is defined for $x > 0$	outside the box
	At each point (x, y) on the curve <i>C</i>	
	$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{2}{x}y = \frac{\cos x}{x}$	
10 (a)	By using an integrating factor, find the general solution of this differential equation. [5 marks]	
	Answer	

		a	Do not write outside the box
10	(b)	It is given that, as $x \to 0$, $y \to k$, where k is a constant.	
10	(b)(i)	Find the value of k	
	(~)(-)		
		[4 marks]	
		L =	
		κ –	
10	(b) (ii)	A student states that the curve $y = k \cos x$ passes through all the stationary points of <i>C</i>	
		Determine whether or not the student is correct.	
		Fully justify your answer.	
		[2 marks]	
			11

			Do not write
11 (a)	Express -128 i in the form $r e^{i\theta}$, where $r > 0$ and $-\pi < \theta \le \pi$	[2 marks]	outside the box
	-128 1 =		
11 (D)	Solve the equation $z^7 + 128 i = 0$		
	giving your solutions in the form $re^{i\theta}$ where $r > 0$ and $-\pi < \theta < \pi$		
	giving your solutions in the form $r \in \mathbb{R}$, where $r > 0$ and $-n < 0 \le n$	[4 marks]	
	Answer		

			Do not write outside the
12	(b)	The line <i>L</i> has Cartesian equation $\sqrt{3} y = 1 - x$	box
		The line <i>L</i> intersects the curve C_1 at the points <i>P</i> and <i>Q</i> , where $OP > OQ$	
12	(b) (i)	By finding the polar coordinates of the points P and Q , verify that the circle C_2 als passes through the points P and Q [5 m	o arks]
12	(b) (ii)	Explain why OP is a diameter of the circle C_2 [2 m	arks]
		•	
12	(c)	Hence find the Cartesian equation of the tangent to the circle C_2 at the point P [4 m	arks]
		Answer	15

13 A curve *C* has equation
$$y = a \cosh\left(\frac{x}{a}\right)$$
, where *a* is a positive constant.
13 (a) Show that the length of the curve from $x = -d$ to $x = d$ is $2a \sinh\left(\frac{d}{a}\right)$ [4 marks]
13 (a) Show that the length of the curve from $x = -d$ to $x = d$ is $2a \sinh\left(\frac{d}{a}\right)$
14 marks]
13 (b) The ends of a chain are attached to points *P* and *Q* such that *PQ* is horizontal and of length $2d$
The chain hangs below *PQ*. Its shape is modelled by the curve *C*
The length of the chain is z
The lowest point of the chain is at a distance $\frac{s}{2n}$ below *PQ*, where $n > 1$
13 (b) (i) Use a suitable sketch to show that $a + \frac{s}{2n} = a \cosh\left(\frac{d}{a}\right)$ [1 mark]

Do not write outside the box 13 (b) (ii) Hence show that $a + \frac{s}{2n} = \sqrt{a^2 + \frac{s^2}{4}}$ [2 marks] **13** (b) (iii) Show that $PQ = \frac{s}{2n} (n^2 - 1) \ln \left(\frac{n+1}{n-1} \right)$ [7 marks]

Do not write outside the box

END OF QUESTIONS

IB/G/Jan20/FM03

14

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
-	
	Copyright information
	For contidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2020 Oxford International AQA Examinations and its licensors. All rights reserved.

